
A UML Profile for Enterprise Distributed Object Computing

Joint Revised Submission

Part IIIa – Component Collaboration Architecture
Profile

Version 0.92

26 February 2001

©Copyright 2000, CBOP, Data Access Technologies, EDS, Fujitsu, Iona Technologies, Open-IT, Sun Microsystems.

CBOP, Data Access Technologies, EDS, Fujitsu, Iona Technologies, Open-IT, Sun Microsystems hereby grant to the
Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this
document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Changes on OMG Document Number: ad/2001-02-19

Submitted by:

CBOP
Data Access Technologies
EDS
Fujitsu
Iona Technologies
Open-IT
Sun Microsystems

Supported by:

Hitachi
SINTEF
Netaccounts

ad/2001-02-19 Part IIIa

IIIa-ii A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Foreword

The ECA UML for EDOC Profile Submission

The ECA UML for EDOC Profile Submission is a specification for a UML Profile for
Enterprise Distributed Object Computing, prepared by the submitting team listed below in
response to the OA&DTF RFP 6 (UML Profile for EDOC, OMG Document ad/99-03-10).

Co-submitting Companies

This submission is prepared by the following companies:

? ? CBOP
? ? Data Access Technologies
? ? EDS
? ? Fujitsu
? ? Iona Technologies
? ? Open-IT
? ? Sun Microsystems

Supporting companies are:

? ? Hitachi
? ? Netaccounts
? ? SINTEF

Status of this document

This document is the second iteration in a submission process that commenced in October
1999, when initial submissions were made. At that time it was hoped that a single joint
submission team could be formed to prepare a single Final submission by this time.
Regrettably, because the requirements of the RFP are very wide and complex, it has not
been possible to achieve that aim, and although considerable effort has been expended to
consolidate all the ideas and requirements of the submitting team, it is acknowledged that
there is still some work required to reduce conceptual overlap and produce a complete and
internally consistent submission.

It is the faith of the submission team that this can be done, in collaboration with other
UML for EDOC submitters not members of this submission team, in the time between
review of this revised submission and the deadline for a Final submission that is agreed at
the ADTF meeting in Irvine in February 2001.

The set of documents is acknowledged to be incomplete at the current issue. In particular:

A major element of the submission, the Distributed Component Profile (Part IV) is not
included in this set, but is published as a separate submission, submitted by a set of

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-iii

companies largely the same as the ECA consortium. This document may be found at
ad/2001-02-20. The DCP details how to utilize the UML to specify a particular kind of
component called a Distributed Component or DC. A DC can usefully be characterized as
being:

? ? a pluggable autonomous software artifact that has a “distributed” interface

? ? represents a single concept

? ? is intended to be deployed as a managed run-time artifact

? ? when implemented and deployed, will typically execute in a single address space.

It is the intention of the submitters to prepare a fully worked example that uses as much of
the profile as possible. This will form Part VI of the submission, but the work has not yet
been completed.

Guide to the Submission

This submission is divided into the following parts as illustrated by the figure below:

Part I is the formal response to the submission as required by the RFP. Part 1 calls up the
remaining parts in the set to create a complete submission.

Part II describes the Enterprise Collaboration Architecture (ECA) which is the framework
for system specification using the EDOC Profile. It provides a detailed rationale for the
modelling choices made and describes how the other elements in the submission, detailed
in Part III, may be used, within the viewpoint oriented framework of the Reference Model
of Open Distributed Processing (RM-ODP), to model all phases of a software system’s
lifecycle, including, but not limited to:

? ? the analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements;

? ? the design and implementation phases, when detailed specifications for the system’s
components are developed;

? ? the maintenance phase, when, after implementation, the system’s behavior is modified
and tuned to meet the changing business environment in which it will work.

Part III contains the detailed profile specifications for the modelling elements of the
profile, specifically:

? ? the Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to model, at varying
and mixed levels of granularity, the structure and behavior of the components that
comprise a system;

? ? the Entity profile, which describes a set of UML extensions that may be used to model
entity objects;

? ? the Event profile, which describes a set of UML extensions that may be used on their
own, or in combination with the other EDOC elements described in Part III, to model
event driven systems;

? ? the Process profile, which describes a set of UML extensions that may be used on their
own, or in combination with the other EDOC elements described in Part III, to model
system behavior in the context of the business it supports;

ad/2001-02-19 Part IIIa

IIIa-iv A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

? ? the Relationships profile, which describes the extensions to the UML core facilities to
meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular.

Part IV is a mapping of the ECA concepts to the Distributed Component Profile (DCP).

Part V is the Patterns Profile, which defines how to use UML and relevant parts of the
ECA profile to express object models such as Business Function Object Patterns (BFOP)
using pattern application mechanisms.

Part VI details worked examples illustrating all aspects of the Profile. (Note that this Part
is not complete and not included in this Revised Submission.)

Part V -
Patterns

Part V -
Patterns

Part VI -
Overall
Examples

Part VI -
Overall
Examples

Part II - The ECA
Architecture

Rationale for the
approach

Structure of an ECA
specification

Part II - The ECA
Architecture

Rationale for the
approach

Structure of an ECA
specification

Part IIIPart III

Part I - Response to RFPPart I - Response to RFP

Arrows indicate that, for
completeness, the document pointed
to needs to be consulted for full
understanding of the document doing
the pointing.

Part IIIb -
Entity profile

Part IIIb -
Entity profile

Part IIIc -
Event profile

Part IIIc -
Event profile

Part IIIa - The CCA
Profile

Recursive Component
Specification

Use of Classifiers,
Collaborations,
Activity Graphs

Part IIIa - The CCA
Profile

Recursive Component
Specification

Use of Classifiers,
Collaborations,
Activity Graphs

Part IIId -
Process
profile

Part IIId -
Process
profile

Part IIIe -
Relationships
profile

Part IIIe -
Relationships
profile

Part IV -
Mapping to
Distributed
Component
Profile (DCP)

Part IV -
Mapping to
Distributed
Component
Profile (DCP)

ECA Submission Structure

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-v

Table of Contents

Foreword ... ii
The ECA UML for EDOC Profile Submission... ii
Co-submitting Companies ... ii
Status of this document ... ii
Guide to the Submission... iii

Table of Contents... v

Table of Figures ... vii

1. Introduction.. 1
1.1 Document Status ... 1
1.2 Logical Meta-Model & UML Profile.. 2
1.3 CCA Notation ... 2

2. Rationale .. 3
2.1 Problems to be solved .. 3
2.2 Approach .. 6
2.3 Conceptual Framework.. 9

3. CCA Logical Meta-Model Specification ... 11
3.1 CCA concept – UML Stereotype – UML base ... 11
3.2 UML Stereotype – Tagged Values ... 12
3.3 Enumeration values ... 13
3.4 Process Component Definition ... 13
3.5 Protocol Specification.. 21
3.6 Component Realization.. 27
3.7 Composition .. 32
3.8 Choreography.. 43
3.9 Document Model ... 53
3.10 Model Management ... 59
3.11 Combined Model Diagram... 63

4. Notation ... 64
4.1 Process Component Specification Notation .. 64
4.2 Protocol Notation .. 65
4.3 Composite Component Notation... 66
4.4 Primitive Component Notation... 68
4.5 Community Process Notation... 68
4.6 Composition Notation.. 68
4.7 Choreography Notation.. 69
4.8 Data Model Notation ... 69
4.9 Model Management Notation... 69
4.10 Data Manager Notation ... 69

ad/2001-02-19 Part IIIa

IIIa-vi A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5. UML Profile Specification .. 71
5.1 Introduction ...71
5.2 Relationship with Conceptual Meta-Model ...71
5.3 Choice of UML elements..71
5.4 Profile structure ...72
5.5 ComponentSpecification «profile» Package ..73
5.6 Protocol «profile» Package...79
5.7 ComponentRealization «profile» Package ...85
5.8 Composition «profile» Package ..87
5.9 Choreography «profile» Package..94
5.10 DocumentModel «profile» Package .. 101
5.11 High-level ActivityGraph of a Composition .. 102
5.12 Common «profile» Package.. 103
5.13 Owners «profile» Package.. 106

6. Constraints (OCL).. 110
6.1 Invariant Constraints (OCL) .. 110
6.2 Definition Constraints (OCL)... 111

7. Samples.. 116
7.1 CCA Notation.. 116
7.2 UML Notation ... 128
7.3 UML-RT Notation... 141

8. Proof of correctness .. 145

9. References.. 155

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-vii

Table of Figures

Figure 1: Structure and dependencies of the CCA Conceptual Meta-Model Packages ..9
Figure 2: ComponentDefinition Conceptual Meta-Model .. 14
Figure 3: Protocol Conceptual Meta-Model ... 21
Figure 4: ComponentRealization Conceptual Meta-Model... 28
Figure 5: Composition Conceptual Meta-Model .. 33
Figure 6: Choreography Conceptual Meta-Model .. 44
Figure 7: DocumentModel Conceptual Meta-Model .. 54
Figure 8: ModelManagement Conceptual Meta-Model.. 60
Figure 9: Combined Conceptual Meta-Model .. 63
Figure 10: ProcessComponent specification notation... 64
Figure 11 Protocol Notation (1)... 65
Figure 12: Protocol notation (2) .. 66
Figure 13: Composite Component notation ... 67
Figure 14: PrimitiveComponent notation .. 68
Figure 15: CommunityProcess notation... 68
Figure 16: DataModel notation ... 69
Figure 17: DataManager notation.. 69
Figure 18: Structure and dependencies of the CCA «profile» Packages ... 73
Figure 19: Class Diagram of the Virtual metamodel for ComponentSpecification «profile» Package 74
Figure 20: Class Diagram of the Virtual metamodel for Protocol «profile» Package .. 79
Figure 21: Class Diagram of the Virtual metamodel for ComponentRealization «profile» Package.................. 85
Figure 22: Class Diagram of the Virtual metamodel for Composition «profile» Package 88
Figure 23: Class Diagram of the Virtual metamodel for Choreography «profile» Package 94
Figure 24: Class Diagram of the Virtual metamodel for DocumentModel «profile» Package 101
Figure 25: Class Diagram of the Virtual metamodel for Common «profile» Package..................................... 103
Figure 26: Class Diagram of the Virtual metamodel for Owners «profile» Package 107
Figure 27 Sample CompositeData definition (CCA)... 116
Figure 28: Sample Choreographed Protocol (CCA) ... 117
Figure 29: Sample Choreographed RequestReplyProtocol (CCA) .. 118
Figure 30: Sample Choreographed FlowProtocol (CCA) ... 118
Figure 31: Sample Choreographed FlowProtocol (CCA) ... 119
Figure 32: Sample Choreographed Protocol with subProtocols (CCA)... 119
Figure 33: Sample ProcessComponents (CCA).. 120
Figure 34: Sample ProcessComponents (CCA) - will be used in the ComposedComponent example 121
Figure 35: Sample Composition as a CommunityProcess. (CCA) .. 121
Figure 36: ContextualBinding (in CommunityProcess) (CCA) .. 122
Figure 37: ComposedComponent (CCA)... 124
Figure 38: ProcessComponent for example on Choreography of ProcessComponent (CCA) 126
Figure 39: Choreography of ProcessComponent – with sub-Protocols (CCA) .. 126
Figure 40: Choreography of ProcessComponent (CCA)... 127
Figure 41: High Level ActivityGraph of Composition (CCA) .. 128
Figure 42: Sample CompositeData definition (UML) .. 128
Figure 43: Sample Protocol (UML) ... 129
Figure 44: SampleRequestReplyProtocol (UML) ... 129
Figure 45: Sample FlowProtocol (UML).. 130
Figure 46: Sample Choreographed Protocol (UML).. 130
Figure 47: Sample Choreographed RequestReplyProtocol (UML).. 131

ad/2001-02-19 Part IIIa

IIIa-viii A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Figure 48: Sample Choreographed FlowProtocol (UML)... 131
Figure 49: Sample Protocol, RequestReplyProtocol, FlowProtocol (UML Collaboration view)....................... 132
Figure 50: Sample Protocol with SubProtocols (UML) ... 133
Figure 51: Sample Choreographed Protocol with exploded SubProtocols (CCA) ... 134
Figure 52: Sample Protocol with SubProtocols (UML Collaboration view) ... 135
Figure 53: Sample ProcessComponents, with PropertyDefinitions, and ProtocolPorts (UML)........................ 135
Figure 54: Some components for the ComposedComponent example (UML) ... 136
Figure 55: Sample Composition as a CommunityProcess (UML)... 137
Figure 56: Sample Composition as a CommunityProcess, (UML Collaboration view) 137
Figure 57: ContextualBinding on CommunityProcess (UML) ... 138
Figure 58: ContextualBinding on CommunityProcess, compact form (UML) .. 139
Figure 59: ComposedComponent (UML) .. 140
Figure 60: Composition of ComposedComponent (UML Collaboration view) ... 141
Figure 61: Sample Protocol, RequestReplyProtocol, FlowProtocol (RT) .. 142
Figure 62: Sample Protocol with messages manual copied from SubProtocols (RT)..................................... 142
Figure 63: Sample ProcessComponents , Class view (RT) ... 142
Figure 64: Buyer and Seller ProcessComponents , Buyer, Structure Diagrams (RT) 142
Figure 65: Some components for the ComposedComponent example, Class view (RT) 143
Figure 66: Order_seller, Quote_seller_Payment_seller, Shipping_seller: Structure Diagrams (RT) 143
Figure 67: Sample Composition as a CommunityProcess. Structure Diagram (RT) 143
Figure 68: Specialized Composition (RT) .. 143
Figure 69: ComposedComponent (RT).. 144
Figure 70: CompositeData (M1s) .. 145
Figure 71: Sample Protocol, RequestReplyProtocol, FlowProtocol (M1s)... 146
Figure 72: Sample Protocol with SubProtocols (M1s)... 147
Figure 73: Sample ProcessComponents, with PropertyDefinitions, and ProtocolPorts (M1s) 148
Figure 74: Some components for the ComposedComponent example (M1s)... 149
Figure 75: Sample Composition as a CommunityProcess (M1s) .. 150
Figure 76: Specializing Composition with ContextualBinding (as a CommunityProcess) (M1s) (as Collaboration) 151
Figure 77: ComposedComponent (M1s).. 152
Figure 78: Choreography of a Protocol (M1s) ... 153
Figure 79: Choreography of a Protocol with sub-Protocols (M1s) .. 154
Figure 80: High Level Activity Graph of a Composition (M1s) ... 154

ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 2001-02-23 IIIa-1

1. Introduction

This document specifies the Component Collaboration Architecture (CCA). The CCA is a
key part of the Enterprise Collaboration Architecture (ECA), a response to OMG RFP for a
UML profile for Enterprise Distributed Object Computing (EDOC), and is referenced by
the response to the OMG RFP for a UML profile for Enterprise Application Integration
(EAI).

The CCA specification details how to utilize the UML to specify, at multiple levels of
granularity, components that collaborate to fulfill some purpose. As a specification it is
intended for analysts, designers, modelers and tool builders already familiar with the
UML.

While initially targeted as a core part of the UML profiles for EDOC and EAI, the CCA is
a general-purpose architecture for recursive composition and decomposition of component-
based information systems, which may be applied to many domains.

The CCA is based, in part, on research funded by the National Institute of Standards,
Advanced Technology Program in a co-operative agreement with Data Access
Technologies.

Authors

The Primary authors of this document are:

? ? Cory Casanave – Data Access Technologies

? ? Antonio Carrasco-Valero – Data Access Technologies

In addition valuable input was received from all members of the ECS submitters team.

1.1 Document Status

This is a draft document. Several issues still exist with the profile and with how it uses
UML. The document is not complete (I.E. UML OCL has not been done) and there may
be inconsistencies to resolve and it certainly needs editing. This draft is intended for the
RFP submission teams working with it.

The purpose of this draft is to validate CCA against the requirements of EDOC and EAI,
provide a basis for moving ahead with these more domain specific profiles and to solicit
input and participation in its refinement.

At some point we expect to do an overall “naming” review to get the CCA terms in-line
with EDOC/EAI and general intuitiveness.

ad/2001-02-19 Part IIIa

IIIa-2 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

1.1.1 Relation to EDOC & ECA

The CCA is a part of, but not the entire, profile for EDOC and the ECA. There are
separate specifications for the Information model, Process model, Events and Patterns.

These sub-profiles are brought together in the ECA part of EDOC and it is expected that
the ECA will reference and refine CCA for specific viewpoints and different levels of
granularity.

1.2 Logical Meta-Model & UML Profile

The specification of this profile contains a logical Metamodel. This metamodel shows the
logical structure of the concepts used in CCA in a MOF compliant structure suitable for
custom tools. The UML profile as a set of stereotypes, tagged values and constraints are
shown in relation to this logical model, providing the capability for off-the-shelf tools to
support CCA.

Most elements of the CCA Meta-Model directly correspond to UML elements or are
logical subtypes of them. These elements are defined independently in the CCA model
and then their relationship to UML elements is shown. When CCA and UML Meta-Model
elements have the same name it may be assumed that have the same semantics.

1.3 CCA Notation

CCA models may utilize standard UML notation or a CCA specific notation. Current off-
the-shelf UML tools may use the standard UML notation while CCA aware tools may use
the CCA notation, which is somewhat more compact and intuitive.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-3

2. Rationale

2.1 Problems to be solved

The information system has become the backbone of the modern enterprise. Within the
enterprise, business processes are instrumented with applications, workflow systems, web
portals and productivity tools that are necessary for the business to function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system keeps
pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such a way that they are not well understood, do
not integrate and are fragile. The result is that the business may become dependent on an
information infrastructure that cannot evolve at the pace required to support business
goals.

The way in which to design, build, integrate and maintain information systems that are
flexible, reusable, resilient and scalable is now becoming well understood but not well
supported. The CCA is one of a number of the elements required to address these needs by
supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

2.1.1 Recursive decomposition and assembly

Information systems are, by their very nature, complex. The only viable way to manage
and isolate this complexity is to decompose these systems into simpler parts that work
together in well-defined ways and may evolve independently over time. These parts can
than be separately managed and understood. We must also avoid re-inventing parts that
have already been produced, by reusing knowledge and functionality whenever practical.

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down”, revealing the underlying parts.
However, systems will also be assembled from existing or bought-in parts – building up
from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and “bottom
up” assembly of existing parts. Bringing together top-down specification and bottom-up
assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of parts in
implementation is repeated at many levels. The composition of parts at one level is the
part at the next level up. In today’s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure – such as operating systems,
communications, DBMS systems and desktop tools.

ad/2001-02-19 Part IIIa

IIIa-4 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Having a rational way to understand and deal with this hierarchy of parts and
compositions, how they work and interact at each level and how one level relates to the
next, is absolutely necessary for achieve the business goals of a flexible and scalable
information systems.

2.1.2 Traceability

The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the development
process at the beginning of a project may be general and “fuzzy” requirements that, as the
project progresses, become precisely defined either in terms of formal requirements or the
parts of the resulting system. Requirements at various stages of the project result in
designs, implementations and running systems (at least when everything goes well!).
Since parts evolve over time at multiple levels and at differing rates it can become almost
impossible to keep track of what happened and why.

Old approaches to this problem required locking-down each level of the process in a
“waterfall”. Such approaches would work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the parts
of the system and the artifacts of the development process be traceable both in terms of
cause-effect and of changes over time. Moreover, this traceability must take into account
the fact that changes happen at different rates with different parts of the system, further
complicating the relationships among them. The tools and techniques of the development
process must maintain and support this traceability.

2.1.3 Automating the development process

In the early days of any complex and specialized new technology, there are “gurus” able to
cope with it. However, as a technology progresses the ways to use it for common needs
becomes better understood and better supported. Eventually those things that required the
gurus can be done by “normal people” or at least as part of repeatable “factory” processes.
As the technology progresses, the gurus are needed to solve new and harder problems – but
not those already solved.

Software technology is undergoing this evolution. The initial advances in automated
software production came from compilers and languages, leading to DBMS systems,
spreadsheets, word processors, workflow systems and a host of other tools. The end-user
today is able to accomplish some things that would have challenged the gurus of 30 years
ago.

This evolution in automation has not gone far enough. It is still common to re-invent
infrastructures, techniques and capabilities every time a new application is produced. This
is not only expensive, it makes the resulting solutions very specialized, and hard to
integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns and technology bindings so that application developers can focus on application
problems. In this way the ability to automate is coupled with the ability to define abstract
viewpoints of a system – some of which may be constant across the entire system.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-5

The challenge today is to take the advances in high-level modeling, design and
specification and use them to produce factory-like automation of enterprise systems. We
can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise scale
systems. Automating the development process at this level will embrace two central
concepts; reusable parts, and model-based development. It will allow tools to apply pre-
established implementation patterns to known modeling patterns. CCA defines one such
modeling pattern.

2.1.4 Loose coupling

Systems that are constructed from parts and must survive over time, and survive reuse in
multiple environments, present some special requirements. The way in which the parts
interact must be precisely understood so that they can work together, yet they must also be
loosely coupled so that each may evolve independently. These seemingly contradictory
goals depend on being able to describe what is important about how parts interact while
specifically not coupling that description to things that will change or how the parts carry
out their responsibility.

Software parts interact within the context of some agreement or contract – there must be
some common basis for communication. The richer the basis of communication the richer
the potential for interaction and collaboration. The technology of interaction is generally
taken care of by communications and middleware while the semantics of interaction are
better described by UML and the CCA.

So while the contract for interaction is required, factors such as implementation, location
and technology should be separately specified. This allows the contract of interaction to
survive the inevitable changes in requirements, technologies and systems.

Loose coupling is necessarily achieved by the capability of the systems to provide “late
binding” of interactions to implementation.

2.1.5 Technology Independence

A factor in loose coupling is technology independence i.e. the ability to separate the high-
level design of a part or a composition of parts from the technology choices that realize it.
Since technology is so transient and variations so prevalent it is common for the same
“logical” part to use different technologies over time and interact with different
technologies at the same time. Thus a key ingredient is the separation high-level design
from the technology that implements it. This separation is also key to the goal of
automated development.

2.1.6 Enabling a business component Marketplace

The demand to rapidly deploy and evolve large scale applications on the internet has made
brute force methods of producing applications a threat to the enterprise. Only by being
able to provision solutions quickly and integrate those solutions with existing legacy
applications can the enterprise hope to achieve new business initiatives in the timeframe
required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These

ad/2001-02-19 Part IIIa

IIIa-6 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB, .net, Bizalk. What has not emerged is the way to bring these technologies together
into a coherent enterprise solution and component marketplace.

Our vision is one of a simple drag and drop environment for the assembly of enterprise
components that is integrated with and leverages a component marketplace. This will
make buying and using a software component as natural as buying a battery for a
flashlight.

2.1.7 Simplicity

A solution that encompasses all the other requirements but is too complex will not be used.
Thus our final requirement is one of simplicity. A CCA model must make sense without
too much theory or special knowledge, and must be tractable for those who understand the
domain, rather than the technology. It must support the construction of simple tools and
techniques that assist the developer by providing a simple yet powerful paradigm
Simplicity needs to be defined in terms of the problem – how simply can the paradigm
so0lve my business problems. Simplistic infrastructure and tools that make it hard to solve
real problems are not viable.

2.2 Approach

Our approach to these requirements is to utilize the Unified Modeling Language (UML) as
a basis for an architecture of recursive decomposition and assembly of parts.

The UML is a standard that has become accepted as the way to model systems at many
levels and for a variety of purposes. As such it is ideal for the CCA. The UML is designed
to be specialized for specific purposes using a mechanism called a “profile”. A profile uses
the extension mechanisms of UML to focus on a specific modeling requirement or
paradigm. In the case of the CCA this is recursive decomposition and assembly of parts of
an information system.

At the outset it should be made clear that we are dealing with a logical concept of
component - “part”, something that can be incorporated in a logical composition. It is
referred to in the CCA as a Process Component. In some cases Process Components will
correspond and have a mapping to physical components and/or deployment units in a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA be
further specialized, using the same mechanisms, for specific purposes such as business-2-
business e-commerce, enterprise application integration, distributed objects, real-time etc.

It is specifically intended that different kinds and granularities of Process Components at
different levels will be joined by the recursive nature of the CCA. Thus Process
Components describing a worldwide B2B business process can decompose into application
level Process Components integrated across the enterprise which can decompose into
program level Process Components within a single system. However, this capability for
recursive decomposition is not always required. Any Process Components part may be
implemented directly in the technology of choice without requiring decomposition into
other Process Components.

The CCA describes how Process Components at a given level of specification collaborate
and how they are decomposed at the next lower level of specification. Since the
specification requirements at these various levels are not exactly the same, the CCA is

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-7

further specialized with profiles for each level. For example, Process Components exposed
on the Internet will require features of security and distribution, while more local Process
Components will only require a way to communicate.

The recursive decomposition of Process Components utilizes two constructs in parallel:
composition (using UML Collaboration) to show what Process Components must be
assembled and how they are put together to achieve the goal, and choreography (the UML
Activity Graph) to show the flow of activities to achieve a goal. The CCA integrates these
concepts of “what” and “when” at each level.

2.2.1 What is a Component Anyway?

There are many kinds of components – software and otherwise. A component is simply
something capable of composing into a composition – or part of an assembly. There are
very different kinds of compositions and very different kinds of components. For every
kind of component there must be a corresponding kind of composition for it to assemble
into. Therefore any kind of component should be qualified as to the type of composition.
CCA does not claim to be “the” component model, it is “a” component model with a
corresponding composition model.

CCA components are processing components, ones that collaborate with other CCA
components within a CCA composition. CCA components can be used to build other CCA
components or to implement roles in a process – such as a vendor in a buy-sell process.
The CCA concepts of component and composition are interdependent.

There are other forms of software and design components, including UML components,
EJBs, COM components, CORBA components, etc. CCA components and composition
are orthogonal to these concepts. A technology component, such as an EJB may be the
implementation platform for a CCA component.

Some forms of components and compositions allow components to be built from other
components, this is a recursive component architecture. CCA is such a recursive
component architecture.

All references to component in this document are specific to the CCA component and
composition model.

2.2.2 Process Component Libraries

While the CCA describes the mechanisms of composition it does not provide a complete
Process Component library. Process Component libraries may be defined and extended for
various domains. A Process Component library is essential for CCA to become useful
without having to re-invent basic concepts.

2.2.3 Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with a
specific infrastructure, executable primitive Process Components and a technology profile,
it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be realized by
a given technology set. For example, a technology profile for Java may enable Java

ad/2001-02-19 Part IIIa

IIIa-8 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

components to be composed and execute using dynamic execution and/or code generation.
A technology profile for CORBA may describe how CORBA components can be composed
to create new CORBA components and systems. In ODP terms, the technology profile
represents the engineering and technology specifications.

Some technology profiles may require additional information in the specification to
execute as desired, this is generally done using tagged values in the specification and
options in the mapping. The way in which technology specific choices are combined with
a CCA specification is outside of the scope of the CCA, but within the scope of the
technology profile. For example, a Java mapping may provide a way to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated
development of executable systems from high-level specifications.

For details of mappings from the CCA Profile to various engineering and technology
options, see Part IV of this submission.

2.2.4 Specification Vs. Methodology

The CCA provides a way to specify a system in terms of a hierarchical structure of
Communities of Process Components and Entities that, when combined with specifications
prepared using technology profiles, is sufficiently complete to execute. Thus the CCA
specification is the end-result of the analysis and design process. The CCA does not
specify the method by which this specification is achieved. Different situations may
require different methods. For example; a project involving the integration of existing
legacy systems will require a different method than one involving the creation of a new
real-time system – but both may share certain kinds of specification.

2.2.5 Notation

The CCA defines some new notations to simplify the presentation of designs for the user.
These new notations are optional in that standard UML notation may be used when such is
preferred or CCA specific tooling is not available. The CCA notation can be used to
3achieve greater simplicity and economy of expression.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-9

2.3 Conceptual Framework

Document Model
(from CcaProfile)

Component Specification
(from CcaProfile)

Composition
(from CcaProfile)

Model
Management

(from CcaProfile)

Component
Realization

(from CcaProfile)

Protocol
(from CcaProfile)

Choreography
(from CcaProfile)

Figure 1: Structure and dependencies of the CCA Conceptual Meta-Model Packages

2.3.1 Process Component Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA component
is separate from how that component is realized. The contract specifies the “outside” of the
component. Inside of a component is its realization – how it satisfies its contract. The
outside of the component is the component specification. A component with only a
specification is abstract, it is just the “outside” with no “inside”.

2.3.2 Protocols and Choreography

Part of a component’s specification is the set of protocols it implements, a protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages – when they can be sent and
received. Each protocol the component supports is provided via a “port”, the connection
point between components.

Protocols, ports and choreography comprise the contract on the outside of the component.
Protocols are also used for large-grain interactions, such as for B2B components.

ad/2001-02-19 Part IIIa

IIIa-10 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

2.3.3 Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an abstract
component – implementing that component.

There may be any number of implementations for an abstract component and various
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

? ? primitive components – those that are built with programming languages or by
wrapping legacy systems.

? ? Composed Components – Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

2.3.4 Composition

Compositions define how components are used. Inside of a composition components are
used, configured and connected. This connected set of component usage’s implements the
behavior of the composition in terms of these other components – which may be primitive,
composed or abstract components.

Compositions can also include a choreography of how the components used work
together, which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together for
some purpose.

Central to compositions are the connections between components, values for
configuration properties and the ability to bind concrete components to a component
usage.

2.3.5 Document & Information Model

The information that flows between components is described in a Document Model, the
structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted on
by CCA process components.

2.3.6 Model Management

To help organize the elements of a CCA model a “package” structure is used exactly as it
is used in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol or component may also be nested within these, since they also act as packages.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-11

3. CCA Logical Meta-Model Specification

3.1 CCA concept – UML Stereotype – UML base

This table summarizes the correspondence between elements of the CCA Conceptual
Meta-Model, the Stereotypes in the UML Profile, and the baseClasses of the Stereotypes.

Package Conceptual
Meta-Model

Stereotype UML base class Comment

ComponentSpecification ProcessComponent ProcessComponent Subsystem

 Port Port Class abstract

 ProtocolPort ProtocolPort Class

 FlowPort FlowPort Class

 PropertyDefinition Property Attribute

 Granularity Enumeration

Protocol Protocol Protocol Subsystem

 RequestReplyProtocol RequestReplyProtocol Subsystem

 FlowProtocol Subsystem for FlowPort

 ProtocolRole ProtocolRole Class

 FlowRole Class For FlowPort

 Interaction - - abstract

 ProtocolMessage ProtocolMessage Reception

 SubProtocol.one role SubProtocolRole Class +Generalizato
ion

ComponentRealization PrimitiveComponent PrimitiveComponent Subsystem

 ComposedComponent ComposedComponent Subsystem

 CommunityProcess CommunityProcess Subsystem

Composition Composition Composition Subsystem

 ComponentUsage ComponentUsage Subsystem

 PortUsage PortUsage Class

 PortProxy PortProxy Class

 ConnectionRole abstract

 Connection Connection Association

 PropertyValue Property Attribute (same as
PropertyD
efinition)

 ContextualBinding ContextualBinding Binding

Choreography Choreography Choreography ActivityGraph

ad/2001-02-19 Part IIIa

IIIa-12 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

 State abstract

 Transition ChoreographyTransition Transition

 Start Start Pseudostate-initial

 TerminateSuccess TerminateSuccess FinalState

 TerminateFailure TerminateFailure FinalState

 Split Split Pseudostate-fork

 Join Join Pseudostate-join

 MessageStep MessageStep Transition with
SendAction
'effect' or
SignalEvent
'trigger'

 SubProtocolStep SubProtocolStep ActionState

 SubStep SubStep SubActivityState

DocumentModel CompositeData CompositeData Class

Common ProtoPort Class

 ProtoComponent Subsystem

 PropertyHolder Class

 Property Attribute

Owners PortOwner Subsystem

 ComponentOwner Subsystem

 ConnectionOwner Subsystem

 ProxyOwner Subsystem

 PropertyHolderOwner Subsystem

 CompositionOwner Subsystem

 MessageOwner Class

 PortNester Class

3.2 UML Stereotype – Tagged Values

This table summarizes the taggedValues defined for the Stereotypes.

Package Stereotype taggedValue type Comment
Protocol ProtocolRole initiator Boolean

 ProtocolMessage postCondition Choreography::Status

ComponentSpecification ProcessComponent granularity Granularity

 persistent Boolean

 ProtocolPort synchronous Boolean

 transactional Boolean

 multiple Boolean

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-13

Composition Connection protocolScope Protocol::Protocol

 messageScope Protocol::
ProtocolMessage

ComponentRealization PrimitiveComponent implementationType String

 implementationLocation String

Choreography SubStep scope Choreographed

 Transition precondition Choreography::Status

3.3 Enumeration values

This table summarizes the values of the defined enumeration types.

Package Enumeration values Comment
ComponentSpecification Granularity Program

Owned
Shared

Choreography Status Success
TimeoutFailure
TechnicalFailure
BusinessFailure
AnyFailure
Any

 DirectionKind Sends
Receives

3.4 Process Component Definition

The ProcessComponent definition specifies the externals of a ProcessComponent, i.e. its
contract with other ProcessComponents. ProcessComponent specification relies on the
specification of protocols, choreographs and documents, which are documented in other
sections. A diagram relating all of the major model elements may be found on page
Error! Bookmark not defined..

ad/2001-02-19 Part IIIa

IIIa-14 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.4.1 Conceptual Meta-Model

ProtocolRole
(from Protocol)
name : String
initiator : Boolean

Protocol Port
<<boundary>>

1

n

+realizes 1

n

Choreography
(from Choreography)

name : String

DirectionType
Sends
Receives

<<Enumeration>>

Port
<<boundary>>

name : String
synchronous : Boolean
transactional : Boolean
mulitple : Boolean

Process Component
granularity : String
persistent : Boolean

1

n +component

1+ports

n

0..1

n

+supertype

0..1
Generalization

+subtypes

n

Data Element
(from Document Model)

Property Definition
name : String
initial : Expression
locked : Boolean

1

n

+component 1

+properties n

1

n

+type1

n

Flow Port
<<boundary>>

direction : DirectionType

0..1

n

+type 0..1

n

0..1

0..n +typeEx p

0..1+constrains

0..n

Figure 2: ComponentDefinition Conceptual Meta-Model

3.4.1.1 Summary

A Process Component represents the contract for a component which performs actions. A
Process Component may realize a set of Ports for interaction with other Process
Components. The Process Component defines the external contract of the component in
terms of ports and a Choreography of port actions (sending or receiving messages or
initiating sub-protocols). Process components specify the externals of the component that
may be realized as concrete primitive components or composite components (See
Component Realization).

The contract of the process component is realized via ports. A port defines a point of
interaction between process components. The simpler form of port is the Flow Port,
which may produce or consume a single data type. More complex interactions between
components use a Protocol Port, which refers to a protocol role – one end of a more
complex interaction between two components (see “Protocol Specification”)

Process Components may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is used.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-15

The specification of the process component may include Choreography to sequence the
actions of multiple ports and their associated actions. The actions of each port may be
Choreographed. Choreography is defined in its own section.

A process component may have a supertype. One common use of supertype is to place
abstract process components within compositions and then produce separate realizations of
those components as subtype composite or primitive components, which can then be
substituted for the abstract components when the composition is used or even at runtime..

3.4.2 Model Elements

3.4.2.1 Process Component

Extends

Choreography (Indicating that a Choreography of port actions may be specified)

Owned By

Package

Semantics

A Process Component represents an active processing component – it does something.
A Process Component may realize a set of Ports for interaction with other Process
Components and it may be configured with properties. An instance of process
component represents an abstract component, one with no defined implementation.
The subtypes of Process Component: Primitive Component & Composed Component
provide implementation detail for concrete components. Direct instances of Process
Component are abstract.

Each component realizes a set of ports for interaction with other components and has a
set of properties that are used to configure the component when it is used.

The order in which actions of the components ports do something may be specified
using Choreography.

Elements

Ports (any number)

“Ports” is the set of Ports on the Process Component. Each port provides a
connection point for interaction with other components and realizes a specific
protocol. The protocol may be simple and use a “flow port” or the protocol may be
complex and use a “Protocol Port”. If allowed by its protocol, a port may send and
receive information.

ad/2001-02-19 Part IIIa

IIIa-16 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Supertype (zero or one) , Subtypes (any number)

A Process Component may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a process
component. A subtype component is bound by the contract of its supertypes but it
may add elements, override property values and restrict referenced types.

A subtype of a component may be substituted for its supertype.

Properties (Any number)

To make a component capable of being reused in a variety of conditions it is
necessary to be able to define and set properties of that component. Properties
represents the list of properties defined for this component.

Granularity

<<More here from Oliver Sims>> A string which defines the scope in which the
component operates. The base values may be:

? ? Program – the component is local to a program instance (default)

? ? Owned – the component is visible outside of the scope of a particular program
but dedicated to a particular task or session which controls its life cycle.

? ? Shared – the component is generally visible to external entities via some kind
of distributed infrastructure.

Specializations of CCA may define additional granularity values.

Persistent

Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

UML

A CCA ProcessComponent is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem, and a Stereotype of Foundation::Core::Class named
"PropertyHolder", and the «enumeration» "Granularity". See details in section 5 "UML
Profile Specification", subsection "ComponentSpecification «profile» Package",
headings "ProcessComponent" and "Granularity" and subsection "Common «profile»
Package", heading "PropertyHolder".

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-17

3.4.2.2 Port

Extends

Choreographed (Indicating that a port may be Choreographed by the process
component’s Choreography)

Owned By

Process Component

Semantics

A port realizes a simple or complex protocol for a process component. Port is abstract
and has two subtypes; Protocol Port and Flow Port. A Flow Port realizes a simple data
flow into or out of a component and protocol port realizes a more complex protocol.
All interactions with a process component are done via one of its ports.

When a component is instantiated each of its ports is instantiated as well, providing a
well defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

Elements

Component (Exactly One)

A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

Transactional

Indicates that interactions with the component are transactional & atomic (in most
implementations this will required that a transaction be started on receipt of a
message). Non-transactional components either maintain no state or must execute
within a transactional component. The mechanisms for management of
transactions are defined outside of the scope of CCA.

Synchronous

A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

ad/2001-02-19 Part IIIa

IIIa-18 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Name

The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realizes.

Multiple

Allows multiple collaborators of a compatible protocol to be attached to the port.

UML

A CCA Port is represented in the UML profile for CCA, as an abstract Stereotype,
with the same name, of Foundation::Core::Class. See details in section 5 "UML Profile
Specification", subsection "ComponentSpecification «profile» Package", heading
"Port".

3.4.2.3 Protocol Port

Extends

Port

Owned By

Process Component

Semantics

A protocol port is a process component port which realizes a protocol role, which is
defined as part of a protocol (See protocol package). A protocol port is used for
potentially complex two-way interactions between components, such as is common in
B2B protocols. By realizing one of the two protocol roles of a protocol, the protocol
port takes on the responsibility of sending and receiving messages as defined in that
protocol.

Elements

Realizes

The protocol role realized by this port on behalf of the component.

UML

A CCA ProtocolPort is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "ComponentSpecification «profile» Package", heading "ProtocolPort".

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-19

3.4.2.4 Flow Port

Extends

Port

Owned By

Process Component

Semantics

 A Flow Port is a process component port which realizes a data flow in our out of the
port on behalf of the component.

Elements

type

The type of information sent or received by this port. If not set the port may send or
receive any type of information, which is useful for generic components .

typeExp

The type of information sent or received by this port as determined by a
configurable property. The expression must return a valid type name. This is used
to build generic components that may have the type of their ports configured. If
type and typeExp are both set then the property expression must return the name of
a subtype of type.

direction

The port may send or receive information of the appropriate type. If information is
sent out, direction has a value of “sends”. If information is received, direction has
a value of “receives”.

UML

A CCA FlowPort is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "ComponentSpecification «profile» Package", heading "FlowPort".

3.4.2.5 Property Definition

Extends

None

ad/2001-02-19 Part IIIa

IIIa-20 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Owned By

Process Component

Semantics

Since components are designed for reuse in a variety of circumstances they may require
configuration when used. Property definitions provide a way do specify the
configurable properties of a component including the name, type and default value of
each. When the component is used in a composition the property can be set,
specializing it for each use. Specific implementation technologies may also allow
runtime or deployment time configuration of properties.

Elements

component

Component for which this is s a property.

type

Type of information in the property.

constrains

Flow ports for which the property configures their type. If the cardinality of
“constrains” is greater than zero, the property must return a type name.

name

Name of the property.

initial

Expression returning the default value of the property.

locked

If locked is true, the value may not be change in uses of the component.

Constraints

If the cardinality of “constrains” is greater than zero, the property must return a type
name.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-21

UML

A CCA PropertyDefinition is modeled in UML as a Stereotype, named
"PropertyDEfinition", of Foundation::Core::Attribute. See details in section 5 "UML
Profile Specification", subsection "ComponentSpecification «profile» Package",
heading "PropertyDefinition".

3.5 Protocol Specification

A protocol is a choreography of interactions between two protocol roles. Components
realize a specific protocol role using a protocol port.

3.5.1 Conceptual Meta-Model

Choreography
(from Choreography)

name : String

A single
message or
message/reply
with no nested
Protocol Roles

Both roles must
be nest
cooresponding
roles

A protocol is a
Choreography
of interactions
between roles

RequestReplyProtocol

Composite Data
(from Document Model)

ProtocolMessage
postCondition : Status n

1
n

+type

1

n 0..1+replies
n

+isReplyTo
0..1

Interaction

ProtocolRole
name : String
initiator : Boolean

1

n

+initiator 1

+initiates n n

1

+respondsn

+responder1

Protocol

1

2

+protocol1

+roles 2

SubProtocol

1

n

+uses1

+usedBy n

Figure 3: Protocol Conceptual Meta-Model

ad/2001-02-19 Part IIIa

IIIa-22 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.5.1.1 Summary

A protocol defines a conversation between two parties, each of which is represented by a
Protocol Role. One protocol role is the initiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual interactions may
by initiated by either party.

Within the protocol, one of the protocol roles sends a Protocol Message which may or
may not have direct replies. While multiple kinds of replies are allowed, only one may be
used as the reply for any particular message instance.

A protocol may also utilize Sub Protocols. This allows one protocol to use another (or
multiple others). For example, a sale protocol may use order, invoice and payment
protocols.

A Request Reply Protocol is a constrained form of protocol patterned after the ebXml
“Business Transaction”. Its intent is to model a single message and reply as a reusable
element. A Choreography is not required since it is pre-defined by the initiation and reply
pattern – similar to an asynchronous method call.

3.5.2 Model Elements

3.5.2.1 Protocol

Extends

Choreography (Indicating that a Choreography of interactions (messages and sub-
protocols) ay be specified)

Owned By

Package

Semantics

 A protocol specifies two protocol roles which interact using messages and sub-
protocols. The protocol specifies all the potential interactions and the choreography of
those interactions.

Elements

roles

The two protocol roles participating in the protocol.

usedBy

The set of SubProtocols which use this protocol role as a sub-protocol.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-23

Constraints

The initiating role must initiate the first message.

UML

A CCA Protocol is modeled in UML as a Stereotype, with the same name, of Model
Management::Subsystem. See details in section 5 "UML Profile Specification",
subsection "Protocol «profile» Package", heading "Protocol".

3.5.2.2 Protocol Role

Extends

None

Owned By

Protocol

Semantics

 A protocol role represents one “end” of a two-way conversation. Each role (the
initiator and the responder) may send and receive messages as part of the conversation.

A protocol role is realized by a protocol port, which enables a component to participate
in the conversation with another component. The same protocol role may be realized
by multiple protocol ports, even on the same component.

Elements

protocol

The protocol for which this is a role.

initiates

The set of interactions (messages and sub-protocols) initiated by this role.

responds

The set of interactions (messages and sub-protocols) received by this role.

name

The name of the role.

ad/2001-02-19 Part IIIa

IIIa-24 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

initiator

The role which initiates the first interaction, the “client”.

UML

A CCA ProtocolRole is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "Protocol «profile» Package", heading "ProtocolRole".

3.5.2.3 Interaction

Extends

Choreographed (indicating that interactions can be choreographed by the protocol).

Owned By

Protocol Role

Semantics

 Interaction is an abstract class representing a portion of a conversation between two
protocol roles which are the “initiator” and “responder”. The interaction may be
Choreographed by the Protocols Choreography.

Elements

Initiator

The role initiating the conversation fragment, I.E. seining the initial message.

Responder

The role responding to the conversations fragment, I.E. receiving the message.

Constraints

The initiator and responder are both owned by the same protocol.

UML

A CCA Interaction is abstract. Only the concrete specializations of Interaction
correspond to UML Stereotypes.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-25

3.5.2.4 ProtocolMessage

Extends

Interaction

Owned By

ProtocolRole

Semantics

 The specification that a message of a given type can be sent between the initiator and
the responder roles.

Elements

Type

The type of information carried by the protocol message.

Replies

The list of messages which are potential replies to this message

IsReplyTo

The message, if any, that this is a reply to.

PostCondition

The success or failure condition implied by the message.

Constraints

A reply cannot have replies.

UML

A CCA ProtocolMessage is modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::Common Behavior::Reception, referencing a Behavioral
Elements::Common Behavior::Signal, with an Foundation::Core::Attribute of type
Class stereotyped as CompositeData, or a DataType or a User defined DataType or an
Enumeration. See details in section 5 "UML Profile Specification", subsection
"Protocol «profile» Package", heading "ProtocolMessage".

ad/2001-02-19 Part IIIa

IIIa-26 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.5.2.5 SubProtocol

Extends

Interaction

Owned By

ProtocolRole

Semantics

A protocol may invoke sub-protocols to encapsulate and re-use interaction patterns.
For example, a “negotiation” protocol may use an “offer” protocol. To use a protocol,
each protocol role in the “using” protocol must specify the protocols it is initiating by
using a SubProtocol.

For each sub-protocol to be used, specify a SubProtocol with the “uses” as the protocol
being used.

Specifying the SubProtocol maps the protocol role as follows;

? ? The initiator of the SubProtocol uses the ProtocolRole of the “uses” protocol
with “initiator” true.

? ? The reponder of the SubProtocol uses the ProtocolRole of the “uses” protocol
with initiator false.

Elements

Uses

The protocol role being used by the protocol role owning the SubProtocol.

UML

A CCA SubProtocol is modeled in UML through a Foundation::Core::Generalization,
with the parent being the initiator protocol, and the child the used Protocol. See details
in section 5 "UML Profile Specification", subsection " About Protocol, Port and
Component (re) Use", heading " Protocol and SubProtocol ".

3.5.2.6 Request Reply Protocol

Extends

Protocol

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-27

Owned By

Package

Semantics

A very common interaction is “request/reply”. A Request Reply Protocol is a
specialization of protocol to make specifying this pattern easier. The Request Reply
Protocol makes the following constraints on a protocol:

? ? There will be only messages, no SubProtocols.

? ? There will be one initial message, all other messages will be replies to that
message.

? ? Only one of the replies will actually be used for any instance of the initiating
message.

? ? The Choreography is fixed to the initial message transitioning to the
responding messages, this Choreography can not be re-specified.

Request Reply Protocol is patterned after the ebXML “Business Transaction” and is
frequently only used as a sub-protocol.

Elements

None

Constraints

See above

UML

A CCA RequestReplyProtocol is modeled in UML in the same way as a CCA Protocol.
See details in section 5 "UML Profile Specification", subsection "Protocol «profile»
Package", heading "RequestReplyProtocol".

3.6 Component Realization

Process components are abstract, they have no specification of implementation. A
components implementation may be specifies as primitive or as a composition of other
components. A community shows how a set of components works together for a business
purpose.

ad/2001-02-19 Part IIIa

IIIa-28 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.6.1 Conceptual Meta-Model

Primitive Component
implementationType : String
implementationLocation : String

<<control>>

Composition
(from Composition)

Community
Process

Package
(from Model Management)

Composed Component
<<control>>

Port Proxy
(from Composition)

<<boundary>>

n

+owner

+proxies n

Process Component
(from Component Specification)

Port
(from Com ponent Specification)

<<boundary>>

n

1

+ports n

+component

1

ConnectionRole
(from Composition) 1n

+represents

1n

Figure 4: ComponentRealization Conceptual Meta-Model

3.6.1.1 Summary

Process components specify the abstract, external contract of the component. Such a
component is realized as either a Primitive Component or Composed Component. A

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-29

primitive component is defined in a model or language outside of the scope of CCA. A
Composed Component is defined by a CCA composition.

A composition may also be used to define a Community Process, which shows how
members of a community collaborate within a process.

Abstract and Concrete components

This model of abstract and concrete type works exactly like abstract Vs. concrete classes in
C++ & Java. An abstract class is incomplete while a concrete class is fully defined. A
concrete component is "real" and can be asked to do work. Note that there is NO WAY do
define the "inside" of a “Process Component”, so it must be abstract & "open". "Abstract"
process components can be created - these have no "insides" specified. A primitive
component is not abstract in that it assumes that its insides are defined elsewhere (I.E. in
Java) - but still defined. A composite component has its insides defined by composition.
And, for any particular concrete composed component there is exactly one such
composition.

We want to be able to have alternatives defined for any abstract component. Alternatives
come via a choice of a concrete component - compositions & primitive components are
alternatives and could be alternatives to the same abstract component. Inheritance
supports this exactly the way it does in Java or C++. So "alternatives" are defined by
making alternative components that satisfy the same contract & are therefor subtypes of
the abstract "contract" of the process component. These alternative components may use
composition or may be primitives and there can be any number of them defined at any
time. Since some components have only one reasonable realization, it is possible to define
the “inside” and “outside” in “one shot” using a primitive or composed component.

 Example:

? ? ProcessComponent: "CalcualePrice" defines ports and choreography.

? ? ComposedComponent: CaluatePriceUsingOtherComponents1 is subtype of
"CalculatePrice"

? ? ComposedComponent: CaluatePriceUsingOtherComponents2 is subtype of
"CalculatePrice"

? ? PrimitiveComponent" CalcualtePriceUsingExternalProgram is subtype of
"CalculatePrice"

? ? ComposedComponent: OrderProcessor Uses "CalcualtePrice" for a
"ComponentUsage" called "priceIt"

? ? At runtime a trader is called and binds one of the "CalculatePriceUsing..."
components to "priceIt". It knows that this is valid because the
"CalculatePriceUsing..." component is a subtype of (substitutable for)
CalcualePrice

ad/2001-02-19 Part IIIa

IIIa-30 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.6.2 Model Elements

3.6.2.1 Primitive Component

Extends

Process Component

Owned By

Package

Semantics

A primitive component specifies a concrete component implemented using capabilities
outside of the scope of CCA – A wrapped legacy application, Java, C++ Etc.

Primitive component inherits from Process Component, allowing primitive components
to define their own “contract” or to inherit a contract from an abstract process
component.

Attributes are provided for the type and location of the external implementation, but
CCA places no restrictions or specific semantics on these attributes. A particular
implementation technology may use them as required.

Elements

ImplementationType

An attribute that is intended to be meaningful to the implementation mapping of
CCA to specify the kind of primitive component, E.G. “Java” or “COM”.

ImplementationLocation

An attribute that is intended to be meaningful to the implementation mapping of
CCA to specify how to locate a primitive component’s implementation artifacts –
such as a class file or DLL.

UML

A CCA PrimitiveComponent is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem. See details in section 5 "UML Profile
Specification", subsection "ComponentRealization «profile» Package", heading
"PrimitiveComponent".

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-31

3.6.2.2 Composed Component

Extends

Process Component and Composition

Owned By

Package

Semantics

A composed component specifies a concrete component using a composition of other
components. The composed component gives CCA its recursive component assembly
capability.

The composition that is part of the composed component allows the use of other
components to be “placed inside” of the composed component, configured and then
“wired together”. This is intended to support visual tools and drag-and-drop
component assembly.

The “inside” of the component can be thought of as a template for a set of component
instances. These instances serve to implement the component type being defined.

The ports on the components “inside” the composition will each expose usage of their
ports. These ports are what can be wired together. For each port on the “outside” of
the component being defined a proxy is created on the “inside” that allows the
component ports on the inside to be wired to these external proxies.

In some cases a composition may use abstract Process Component’s inside of a
composition. Obviously such a composition is not fully concrete. By the time such a
“partially abstract” composition is used, the abstract process components must be
substituted with concrete components. This may be dome at design time (using
contextual binding) or at runtime (using implementation specific techniques).

The semantics of composition are defined in the “Composition” package.

Elements

Proxies

For each port on the process component a Port Proxy is created (preferably by the
design tool) for use in the composition. These proxies are used make connections to
the “inside” of these ports.

A port may be seen as extending though the components boundary. On the outside,
external components may connect to the port. On the inside, components are
connected to the proxy for this external port.

Proxies have the inverse interface from the external port. That is, if a ports “sends”
a document its proxies will receive that document.

ad/2001-02-19 Part IIIa

IIIa-32 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

UML

A CCA ComposedComponent is modeled in UML as a Stereotype, with the same
name, of Model Management::Subsystem. See details in section 5 "UML Profile
Specification", subsection "ComponentRealization «profile» Package", heading
"ComposedComponent".

3.6.2.3 Community Process

Extends

Composition and Package

Owned By

Package

Semantics

Community processes may be thought of as the “top level composition” in a CCA
specification, it is a specification of a composition of process components that work
together for some purpose other than specifying another component.

For example, a community process could define the usage of a buyer, a seller, a freight
forwarder and two banks for a sale and delivery process.

Note that designs can being done “top down” or as an assembly of existing components
(bottom up). When design is being done top down, it is usually the community process
which comes first and then components specified to fill the roles of that process.

Community processes are also useful for standards bodies to specify the roles and
interactions of a B2B process.

Elements

None

UML

A CCA CommunityProcess is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem. See details in section 5 "UML Profile
Specification", subsection "ComponentRealization «profile» Package", heading
"CommunityProcess".

3.7 Composition

Composition is an abstract capability that is used for composite components and for
community processes. Compositions shows how a set of components can be used for some
purpose.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-33

3.7.1 Conceptual Meta-Model

Port
(from Component Specification)

<<boundary>>

ProtocolMessage
(from Protocol)

SubProtocol
(from Protocol)

ConnectionRole

1

n

+represents 1

n

Property Defini tion
(from Component Specification)

Connection

0..1

n

0..1

n

MessageScope

0..1

n
+ProtocolScope

0..1

n

2

n

+connects 2

+connectionsn

Port Usage
<<boundary>> Property Value

value : Expression

1

n

+fill s

1

n

Composition

n

1

+connectionsn

+context
1

ContextualBindingn

1
+bindings

n
+context

1
Process Component

(from Component Specification)
1

n

+bindsTo

1
n

Component Usage
<<control>>

name : String

1

n

+owner1

+ports n n

1

+configurationn

+owner1

1

n

+context
1

+usesn

1

n

+fills
1

n

1

n

+uses 1

n

Port Proxy
<<boundary>>

Composed Component
(from Component Realization)

<<control>>

n+proxies n

+owner

Choreography
(from Choreography)

name : String

Figure 5: Composition Conceptual Meta-Model

3.7.1.1 Summary

A composition defines how process components work together to achieve some
purpose. That purpose is either to realize a larger process component or describe a
community process.

A composition contains component usages to show how other process components may
be used within the composition. Note that the same process component may be used
multiple times for different purposes. Each time a process component is used, each of
its ports will also be used with a “Port Usage”. A port usage shows the connection
point for each use of that component within the composition. The components used
may be concrete (primitive of composite) or abstract (process component). If the
components used are abstract, a concrete component must be bound to the usage at
some later time (see ContextualBinding).

ad/2001-02-19 Part IIIa

IIIa-34 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Attached to a component usage is one or more Property Values, configuring the
component with properties that have been defined in property definitions.

A composition also contains a set of “connections”. A connection connects compatible
ports on components together. Anything sent out of one side will be received by the
other side. So a connection is a form of event registration.

A connection may also connect to a Port Proxy. A port proxy is used when the
composition realizes a process component and provides a connection point for the
external ports of the process component being defined. Each port proxy represents a
wiring point on the “inside” for a port on the “outside” of the component being
composed.

A connection may connect a port that implements only parts of a particular protocol,
such as a flow port being connected to one message in a protocol. This enables
components at different levels of granularity to be connected. When this occurs the
connection may have to be scoped using Message Scope, to select a particular message
when the connection is to a flow port. Or, The connection may be constrained by a
Sub-protocol using Protocol Scope.

A composition may use (uses relation) an abstract Process Component as well as
concrete primitive or composite components. A Contextual Binding allows realized
components to be substituted for abstract components when a composition is used.
This may be done in the design or at runtime. When the substitution is done in the
design a contextual binding is used. The mechanisms for runtime substitution are not
defined in CCA.

When a Choreography is defined for a composition, it defines the sequencing of each
component usage as a series of steps with transitions between these steps, forming a
state machine.

3.7.2 Model Elements

3.7.2.1 Composition

Extends

Choreography (Indicating that Component Usage and Connection Roles can be
choreographed).

Owned By

Package (as a Community Process or Composed Component)

Semantics

Composition is an abstract capability that is inherited by the two things that can be
composed – Composed Components and Community Processes. Compositions describe
how instances of process components are configured, connected and choreographed to
implement the composed component or community process.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-35

Elements

uses

The set of component usage’s for the composition, this set may be considered as a
template for component instances which will realize the composition.

connections

The set of connections (or wires) between port instances or port proxies. A
connection registers each port as an event listener for the other, connecting the
message flows between instances of components used by the composition.

bindings

The set of “ContextualBindings” for the composition, where the composition is the
context for the substitution of concrete components for abstract components.

UML

A CCA Composition is modeled in UML as a Stereotype, with the same name, of
Model Management::Subsystem. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "Composition".

3.7.2.2 Component Usage

Extends

Choreographed (Indicating that process component may be choreographed by the
compositions choreography).

Owned By

Composition

Semantics

A composition uses other components to implement the propose of the composition (a
community process or composed component), “Component Usage” represents such a
use of a component. The “uses” relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as a template of component instances. Each
component instance will have a “Component Usage” to say what kind of component it
is, what its property values are and how it is connected to other components. A
component usage will cause a component instance to be created at runtime.

Each use of a component will carry with it a set of “port usage” which will be the
connection points to other components.

ad/2001-02-19 Part IIIa

IIIa-36 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Elements

Name

The name of the usage. By default this will start with the name of the “uses”
process component with some suffix to make it unique.

context

The composition which owns the component usage.

Uses

The process component to be used (which includes the subtypes of process
component: primitive and composed component).

Ports

The port usage’s – one for each port on the “uses” process component. These
should be created automatically by the design tool.

Configuration

Property values to configure the component based on its property definitions. Each
value will set a value of the component instance created to implement the
composition.

Constraints

If “uses” is an abstract Process component or a composed component using abstract
process components a concrete component must be bound to the component usage prior
to execution.

There must be a port usage for each port defined on the process component.

UML

A CCA ComponentUsage is modeled in UML as a Stereotype, with the same name, of
Model Management::Subsystem, and a Stereotype of Foundation::Core::Class named
"PropertyHolder". See details in section 5 "UML Profile Specification", subsection
"Composition «profile» Package", heading "ComponentUsage", and subsection
"Common «profile» Package", heading "PropertyHolder".

3.7.2.3 Property Value

Extends

None

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-37

Owned By

Component Usage

Semantics

To be useful in a variety of conditions, component may have configuration properties –
which are defined by a “property Definition”. When the component is used in a
“Component Usage” those properties may be set using a “Property Value”. These
values will be used to construct a component instance.

A property value should be included whenever the default property value is not correct
in the given context.

Elements

Owner

The component usage to which the property value applies.

Fills

The property definition for the value.

value

An expression returning the property value. Property expressions may only
reference constant values and properties of other components.

Constraints

The type returned by the property value expression must be compatible with the type
defined by the property definition.

The property value must fill a property definition of the component being used.

UML

A CCA PropertyValue is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Attribute. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "PropoertValue".

3.7.2.4 Port Usage

Extends

ConnectionRole

ad/2001-02-19 Part IIIa

IIIa-38 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Owned By

Component Usage

Semantics

For each component usage there will be exactly one “Port Usage” for each port defined
for the component being used. These will normally be created by the design tool.

The Port Usage provides a “connection point” for components within the composition
and expose the realized protocols or data flows within the composition.

The “process Component” / “Port” pattern which defines the components external
interface is essentially replicated in the “Component Usage” / “Port Usage” part of the
composition. Each time a component is used, each of its ports is used as well.

Elements

Owner

The component usage for which this is a port usage.

Constraints

For each component usage there will be exactly one “Port Usage” for each port defined
for the component being used.

UML

A CCA PortUsage is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "PortUsage".

3.7.2.5 Port Proxy

Extends

Connection Role

Owned By

Composed Component

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-39

Semantics

When a composition is being used to define the insides of a composed component there
must be a way to connect to the ports on the “outside” of the component being defined.
Port Proxy provides this capability by making a “Connection Role” within the
composition for connecting to these external ports. Port proxies should be created
automatically by the design tool.

Ports can be thought of as extending through the component being defined with an
“external” and an “internal” connection point. The port proxy is this internal wiring
point. As such it has a protocol which is the inverse of the “external” ports protocol. If
the external ports sends a message, the port proxy will receive that message and
forward it on to the internal components connect to the port proxy.

Elements

Owner

The composed component being defined and owning the port being represented (see
“represents” in “ConnectionRole”).

Constraints

For each composed component there shall be exactly one port proxy for each port
defined on the composed component.

If the port proxy represents a flow port, the proxy shall have the inverse direction of the
flow port.

If the port proxy represents a protocol port, the protocol role of the port proxy shall be
the inverse protocol role of the represented port.

UML

A CCA PortProxy is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "PortProxy".

3.7.2.6 Connection Role

Extends

None

Owned By

Ownership is managed by concrete subtypes: Port Usage and Port Proxy.

ad/2001-02-19 Part IIIa

IIIa-40 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

ConnectionRole is an abstract element which represents something that can be
connected within a composition. This will either be a “Port Usage” or “Port Proxy”. In
either case the connection role will reference a “port” that is the basis for the
connection point.

A ConnectionRoles may be an event consumer, event producer or both and may be
connected by any number of connections. Each connection registers instances of the
underlying port as event producer and/or consumer of the other, thus forwarding the
messages between components instances.

Elements

represents

The port which the connection role represents. The connection role is bound by the
constraints of the associated port.

connections

The connections attached to (or using) the connection role.

UML

A CCA ConnectionRole is abstract. Only the concrete specializations of
ConnectionRole correspond to UML Stereotypes.

3.7.2.7 Connection

Extends

None

Owned By

Composition

Semantics

A connection connects the instances of two ports within a composition. Each port can
produce and/or consume message events. The connection registers each port instance
as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages, it
doesn’t not know “who” will be on the other side. The composition shows how an

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-41

instance of a component will be used and thus how it will be connected to other
components within that context.

A connection connects exactly two Connection Roles (Port usage or Port Proxy). If
connecting to Port Usage, it will be connecting to the use of a component within a
composition. If connecting to a Port Proxy it will be connecting to the ports on the
“outside” of the component being composed.

A connection may be thought of as a cable between two plugs. The plugs are the
ConnectionRoles and the connection the cable.

Since a connection may connect a complex protocol to a simpler one or even a flow
port, it may be necessary to scope the connection. Setting “ProtocolScope” to a specific
Sub Protocol selects a part of that protocol. Setting MessageScope to a particular
message scopes the connection to only connect that message. Setting these relations is
only required when connecting ports of different granularities. In many cases tools
may be able to set these based on the type of the two ports.

Elements

Context

The composition which owns the connection. Note that the connection is not
owned by either of the things connected, which are ignorant of how they are used.
The composition owns the component usage and how they are connected within that
context.

Connects

The two ConnectionRoles (Port Proxy or Port Usage) being connected.

MessageScope

Restricts the connection to the related connection.

ProtocolScope

Restricts the connection to the related sub protocol.

Constraints

Each connection role must be owned by the same composition as the connection.

UML

A CCA Connection is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Association. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "Connection".

ad/2001-02-19 Part IIIa

IIIa-42 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.7.2.8 Contextual Binding

Extends

None

Owned By

Composition

Semantics

A composition is able to use abstract process components in compositions – we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “Pricing” component may use an abstract component
“PriceFormula”. In our “InternationalSales” composition we may want to say that
“PriceFormula” uses “InternationalPricing”.

Contextual Binding allows the substitution of a more concrete component for a
compatible abstract component when an abstract composed component is used. So
within the composition that uses the abstract composed component (International
Sales) we say the use of a particular Component (use of PriceFormula) will be bound to
a concrete component (InternationalPricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these
are out of scope for CCA. Some specialization of CCA may subtype
ContextualBinding and apply selection formula to the binding, as is common in
workflow systems.

Elements

Context

The composition which is using the abstract composed component and wants to
bind a more specific process component for an abstract one. The owner of the
contextual binding.

Fills

The use of a component in which the substitution to a concrete component should
take place. This component usage does not have to be within the same composition
as the contextual binding, it may be anywhere the component usage occurs within
the scope of the composition owning the binding.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-43

BindsTo

The concrete component which will be bound to the component usage.

Constraints

The process component related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills”.

UML

A CCA ContextualBinding is modeled in UML as a Stereotype, with the same name,
of Foundation::Core::Binding. See details in section 5 "UML Profile Specification",
subsection "Composition «profile» Package", heading "ContextualBinding".

3.8 Choreography

Choreography allows the ordering of various actions in a system to be specified as a set of
steps in a process and transitions between these steps. The base model of Choreography is
that of an activity graph .

ad/2001-02-19 Part IIIa

IIIa-44 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.8.1 Conceptual Meta-Model

Start

TerminateSuccess TerminateFailure

Split

Join
Any : Boolean

A Choreography uses
transitions to order
steps of choreographed
actions.

Status
Success
TimeoutFailure
TechnicalFailure
BusinessFailure
AnyFailure
Any

<<Enumeration>> Choreography
name : String

State
name : String

n

1

+states
n

+context

1

Transition
Precondition : Status

n

1

+transitions
n

+context
1

1
n+source

1 +outgoing
n

1
n+target

1 +incoming
n

ProtocolMessage
(from Protocol)

postCondition : Status

0..1

+guard

0..1

MessageStep

1

+message

1

SubProtocol
(from Protocol)

ProtocolStep
1

+subProtocol

1

Port
(from Component Specification)

<<boundary>>
Port Usage

(from Composition)

<<boundary>>

StepScope

Step

n

1

n +scope
1

SubStep

1

+sub

1

Figure 6: Choreography Conceptual Meta-Model

3.8.1.1 Summary

A Choreography uses transitions to order steps of choreographed actions, as a state
machine. Each step in the choreography must refer to a Message or a SubProtocol.
Messages and SubProtocols take on or begin some kind of action or activity within the
context of the choreography.

Choreography is an abstract capability that is inherited by things that can be
choreographed, such as: Process Componentsand Protocols.

Within any choreography there must be some place to start and places to end, either
with a Terminate Success or a Terminate Failure. Concurrent steps are defined by
using a split with transitions to each concurrent step and a join when the concurrent
steps come back together.

The ordering of steps is controlled by transitions between states (step being a kind of
state). Transitions specify flow of control that will occur if the conditions
(Precondition and Guard) are met.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-45

A Sub Action allows choreography of interactions within protocols where interactions
are also defined as steps.

Each action will have a termination status of success or one of several kinds of failure.

Choreography may be used at multiple levels;

? ? A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. This is much like a sequence diagram.

? ? A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of ports and is part of the external contract of the component.

The use of choreography at all of these levels is not always required, as sufficient
specification may be determined from the other layers.

3.8.2 Model Elements

3.8.2.1 Choreography

Extends

None (Abstract Capability)

Owned By

Ownership is based on concrete model element which inherits from Choreography.

Semantics

Choreography is an activity graph owning a set of states and transitions and specifying
an ordering of these states based on the transitions. The states that perform actions are
“Steps” of the process being choreographed.

Elements

States

The set of states being choreographed and, indirectly (through “step”) the set of
actions being choreographed.

Transitions

The transitions which order the states and steps.

ad/2001-02-19 Part IIIa

IIIa-46 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

UML

A CCA Choreography is abstract.

CCA Choreography, is modeled in UML as an ActivityGraph, aggregated in the
context of the UML stereotype for Protocol or ProcessComponent. See "UML Profile
Specification", subsection "Choreography «profile» Package", heading
"Choreography".

3.8.2.2 State

Extends

None

Owned By

Choreography

Semantics

State is an abstract element that specifies something that can be the source and/or
target of a transition and thus ordered within the choreographed process. The states
that do “real work” are steps.

Elements

Context

The owner of the state.

Name

The name of the state

Incomming

The set of all possible transitions into this state.

Outgoing

The set of all possible transitions out of this state.

Constraints

Incoming and outgoing transitions will be within the same choreography.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-47

UML

A CCA State is abstract. Only the concrete specializations of State correspond to UML
Stereotypes.

The UML modeler may use UML Behavioral Elements::State Machines::State for the
specification of StateMachines and ActivityGraphs.

3.8.2.3 Transition

Extends

None

Owned By

Choreography

Semantics

States represent a condition of some process. Transitions represent the movement from
one state to another, or a flow of control. The transitions may have conditions which
control if it is or is not a legal transition in a given circumstance, this is expressed
using the PostCondition and Guard.

If there are multiple legal transitions out of a state, it is up to the implementation of
that state to pick the actual transition from the set of potential transitions..

Elements

Context

The choreography owning the transition.

Source

The state from which the transition occurs.

Target

The state to which the transition occurs.

PreCondition

The termination status of the prior state which must be true for the transition to take
place (be legal). Default: Any

ad/2001-02-19 Part IIIa

IIIa-48 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Guard

The termination action of the prior step which must have happened for the
transition to take place (be legal).

UML

A CCA Transition is modeled in UML as a Stereotype named
"ChoreographyTransition", of Behavioral Elements::State Machines::Transition. See
details in section 5 "UML Profile Specification", subsection "Choreography «profile»
Package", heading "ChoreographyTransition".

3.8.2.4 Step

Extends

State

Owned By

Choreography

Semantics

A step is a state in a choreographed process that does real work by performing some
action.

There are three kinds of Steps : MessageStep, ProtocolStep and SubStep.

Elements

scope

The Port, PortUsage or SubProtocol that defines the context for the Step.

UML

A CCA Step is abstract and not directly modeled in UML. Its specializations are
modeled in UML as specified below.

3.8.2.5 MessageStep

Extends

step

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-49

Owned By

Choreography

Semantics

 A MessageStep is a Step for sending or receiving a ProtocolMessage.

Elements

message

The ProtocolMessage to be sent or received.

UML

A CCA MessageStep is modeled in UML as a Stereotype, named "MessageStep" of
Behavioral Elements::State Machines::Transition. See details in section 5 "UML
Profile Specification", subsection "Choreography «profile» Package", heading
"MessageStep".

3.8.2.6 ProtocolStep

Extends

State

Owned By

Choreography

Semantics

 A SubProtocolStep is a step for launching the activity of a whole SubProtocol .

Elements

subProtocol

The SubProtocol to activate in the ProtocolStep.

UML

A CCA ProtocolStep is modeled in UML as a Stereotype, named "ProtocolStep" of
"Step", of Behavioral Elements::Activity Graph::ActionState. See details in section 5
"UML Profile Specification", subsection "Choreography «profile» Package", headings
"ProtocolStep".

ad/2001-02-19 Part IIIa

IIIa-50 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.8.2.7 SubStep

Extends

State

Owned By

Choreography

Semantics

 A SubStep is a step in a choreographed process, inserted to reference and drill down
into an specific Port, PortUsage or SubProtocol, such that inner MessageStep or
SubProtocolStep unequivocaly refer to the desired Message or SubProtocol .

A SubStep is used within the context of another step, such as a message within a
protocol. SubStep enables the choreography of fine-grain actions.

Elements

sub

The nested Step to execute within the scope of the SubStep.

UML

A CCA SubStep is modeled in UML as a Stereotype, named "SubStep" of Behavioral
Elements::Activity Graph::SubactivityState. See details in section 5 "UML Profile
Specification", subsection "Choreography «profile» Package", headings "SubStep".

3.8.2.8 Start

Extends

State

Owned By

Choreography

Semantics

Start is an implicitly created state that represents a choreographed element that is ready
to start and will start based on the transitions from the start state.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-51

Elements

None

UML

A CCA Start is modeled in UML as a Stereotype, with the same name, of Behavioral
Elements::State Machines::Pseudostate, of kind #initial. See details in section 5 "UML
Profile Specification", subsection "Choreography «profile» Package", heading "Start".

3.8.2.9 TerminateSuccess

Extends

State

Owned By

Choreography

Semantics

The TerminateSuccess state is an implicitly generated state that is the normal,
successful completion of a choreography. When TerminateSuccess is reached the
action of the choreographed element is done.

Elements

None

UML

A CCA TerminateSuccess is modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::State Machines::FinalState. See details in section 5 "UML Profile
Specification", subsection "Choreography «profile» Package", heading
"TerminateSuccess".

3.8.2.10 TerminateFailure

Extends

State

Owned By

Choreography

ad/2001-02-19 Part IIIa

IIIa-52 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

The TerminateFailure state is an implicitly generated state that is transitioned to when
the choreographed element ends in failure. When TerminateFailure is reached the
action of the choreographed element is done. In a business sense, failure is indicated
when the business intent of the choreography was not satisfied. E.G. when an order was
not accepted.

Elements

None

UML

A CCA TerminateFailure is modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::State Machines::FinalState. See details in section 5 "UML Profile
Specification", subsection "Choreography «profile» Package", heading
"TerminateFailure".

3.8.2.11 Split

Extends

State

Owned By

Choreography

Semantics

A split is used to indicate that all legal transitions from the split state will occur. It is
undefined if these will happen concurrently or in parallel. This may be distinguished
from any other step in which only one transition from any state may occur.

Elements

None

UML

A CCA Split is modeled in UML as a Stereotype, with the same name, of Behavioral
Elements::State Machines::Pseudostate, of kind #fork. See details in section 5 "UML
Profile Specification", subsection "Choreography «profile» Package", heading "Split".

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-53

3.8.2.12 Join

Extends

State

Owned By

Choreography

Semantics

A join is used to combine actions that had been split. If “any” is true, the first
transition to the join will conclude the spit and all other actions of the split will be
terminated. If any is false, all actions of the split must conclude for the join to be
satisfied and transition out.

Elements

Any

True if the first transition to the join terminates the join. (Default: false)

UML

A CCA Join is modeled in UML as a Stereotype, with the same name, of Behavioral
Elements::State Machines::Pseudostate, of kind #join. See details in section 5 "UML
Profile Specification", subsection "Choreography «profile» Package", heading "Join".

3.9 Document Model

The document model defines the information that can be transferred between and
manipulated by process components.

ad/2001-02-19 Part IIIa

IIIa-54 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.9.1 Conceptual Meta-Model

Data
Type

Data Invarient
expression : String
onCommit : Boolean

Attribute
byValue : Boolean
required : Boolean
many : Boolean
initialValue : Expression

Data Element1

n +constrainedElement

1+constraints

n
1

n

+type

1

n

Enumeration
Value

name : String

Emumeration

n
+values
n

+emumeration

1+initial 1

Composite Data

n

1
+feature

n+owner

1

n

0..10..1

+supertype

n +subtypes

Figure 7: DocumentModel Conceptual Meta-Model

3.9.1.1 Summary

A data element represents a type of data which may either be primitive or composite.
Composite data has named attributes which reference other types. Any type may have
a Data Invariant expression.

Attributes may be byValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked
as required and/or many to indicate cardinality. Primitive data types define anything
from integers to movies – these types are defined outside of CCA. An enumeration
defines a type with a fixed set of values

3.9.2 Model Elements

3.9.2.1 Data Element

Extends

None

Owned By

Package

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-55

Semantics

Data Element is the abstract supertype of all data types. It defines some kind of
information.

Elements

Constraints

The set of rules that are applied to the data type.

UML

A CCA DataElement is abstract. Only some of the concrete specializations of
DataElement correspond to UML Stereotypes.

3.9.2.2 Data Type

Extends

Data Element

Owned By

Package

Semantics

A primitive data type, such as an integer, string, picture, movie…

Primitive data types have their structure and semantics defined outside of CCA.

Elements

none

UML

Corresponds to standard and User Defined UML DataTypes.

3.9.2.3 Enumeration

Extends

Data Element

ad/2001-02-19 Part IIIa

IIIa-56 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Owned By

Package

Semantics

 An enumeration defines a type that may have a fixed set of values.

Elements

Values

The set of values the enumeration may have.

Initial

The initial, or default, value of the enumeration.

Constraints

The names of all enumeration values must be unique within the enumeration.

UML

Corresponds to User defined enumeration stereotypes of UML DataType.

3.9.2.4 Enumeration Value

Extends

None

Owned By

Enumeration

Semantics

 A possible value of an enumeration.

UML

The values of User defined enumeration stereotypes of UML DataType.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-57

Elements

Enumeration

The owning enumeration.

Constraints

3.9.2.5 Composite Data

Extends

Data Element

Owned By

Package

Semantics

 A data type composed of other types in the form of attributes.

Elements

Feature

The attributes which form the composite.

Supertype

A type from which this type is specialized. The composite will include all attributes
of all supertypes as attributes of itself.

Subtypes

The types derived from this type.

Constraints

The names of all attributes must be unique within the scope of the composite.

ad/2001-02-19 Part IIIa

IIIa-58 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

UML

A CCA CompositeData is modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See details in section 5 "UML Profile Specification",
subsection "DocumentModel «profile» Package", heading "CompositeData".

3.9.2.6 Attribute

Extends

None

Owned By

Composite Data

Semantics

Defines one “slot” of a composite type that may be filled by a data element of “type”.

Elements

Owner

The composite of which this is an attribute.

Type

The type of information which the attribute may hold. Type may also be filled by a
subtype.

ByValue

Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

Required

Indicates that the attribute slot must have a value for the composite to be valid.

Many

Indicates that there may be multiple occurrences of values. These values are always
ordered.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-59

InitialValue

An expression returning the initial value of the attribtue.

UML

A CCA Attribute corresponds to the UML model element of same name.

3.9.2.7 Data Invariant

Extends

None

Owned By

Package

Semantics

 A constraint on the legal values of a data element.

Elements

ConstrainedElement

The data element that will be constrained.

Expression

The expression which must return true for the data element to be valid.

OnCommit (Default: False)

True indicates that the constraint only applies to a fully formed data element, not to
one under construction.

UML

A CCA DataInvariant corresponds to a UML Foundation::Core::Constraint.

3.10 Model Management

Model management defines how CCA models are structured and organized. It directly
maps to its UML counterparts and is only included as an ownership anchor for the other
elements.

ad/2001-02-19 Part IIIa

IIIa-60 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

3.10.1 Conceptual Meta-Model

Process Component

granularity : String
persistent : Boolean

(from Component Specification)

Data Element
(from Document Model)

Protocol
(from Protocol)

Package

Package Content
name : String

n

1

+ownedElement

n

+namespace

1

Element Import

1

n

+modelElement

1

+elementImport
n

Community Process
(from Component Realization)

Figure 8: ModelManagement Conceptual Meta-Model

3.10.1.1 Summary

A package defines a logical hierarchy of reusable model elements. Elements that may
be defined in a package are Package Content and may be Process Components,
Protocols, Data Elements, Community Processes and other packages. A Imported
Element defines a visibility of a package content in a package that is not its owner..
Shortcuts are useful to organize reusable elements from different perspectives.

Note that process components are also packages, allowing elements which are specific
to that component to be defined within the scope of that component.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-61

3.10.2 Model Elements

3.10.2.1 Package

Extends

None

Owned By

Package or global scope

Semantics

Defines a structural container for “top level” model elements that may be referenced by
name for other model elements.

Elements

OwnedElements

The content of the package.

UML

A CCA Package corresponds to the UML model element of same name.

3.10.2.2 Package Content

Extends

None (Abstract Capability)

Owned By

Package

Semantics

 An abstract capability that represents an element that may be placed in a package.

ad/2001-02-19 Part IIIa

IIIa-62 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Elements

Name

The unique name of the element within the package

Constraints

Names must be unique.

UML

A CCA PackageContent is abstract. Corresponds to the UML abstract ModelElement.

3.10.2.3 Element Import

Extends

None

Owned By

Package

Semantics

 Defines an “Alias” for one element within another package.

Elements

ModelElement

The base element to have aliases.

UML

A CCA ElementImport corresponds to the UML model element of same name.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-63

3.11 Combined Model Diagram

Primitive Component
(from Component Realization)

<<control>>

Choreography
(from Choreography)

Transition
(from Choreography)

1

n

+context
1

+transitions

n

State
(from Choreography)

1n

+context

1

+states

n

n

1

+outgoing

n

+source
1

n

1

+incoming

n

+target
1

Port Proxy
(from Composition)

<<boundary>>

Composed Component
(from Component Realization)

<<control>>

Flow Port
(from Component Specification)

<<boundary>>

Property Definition
(from Component Specification)

0..n

0..1

+constrains

0..n

+typeExp

0..1

Data Element
(from Document Model)

n

0..1

n

+type 0..1

n

1

n

+type

1

Port Usage
(from Composition)

<<boundary>>
Property Value

(from Composition)

n

1

n

+fills
1

Process Component
(from Component Specification)0..1

n

+supertype

0..1 Generalization

+subtypes
n

n

1

+properties
n

+component1

Attribute
(from Document Model)

n

1

n

+type 1

ContextualBinding
(from Composition)

n 1n

+bindsTo

1

Component Usage
(from Composition)

<<control>>

n

1

n

+fills
1

n

1

+ports n

+owner 1
/ 1

n

+owner1

+configuration
n

n

1

n

+uses 1

Port
(from Component Specification)

<<boundary>>

n

1

+ports
n

+component
1

Composite Data
(from Document Model)

1 n

+owner

1

+feature

n

Composition
(from Composition) 1

n

+context1 +bindings

n

n

1

+uses n

+context 1

/

ConnectionRole
(from Composition)

1n

+represents

1n

Connection
(from Composition)

1

n

+context 1

+connections

n

n

2

+connections
n

+connects
2

Protocol Port
(from Component Specification)

<<boundary>>

Interaction
(from Protocol)

ProtocolRole
(from Protocol)

n

1

n

+realizes1

/

1n

+initiator

1

+initiates

n
1n

+responder

1

+responds

nProtocol
(from Protocol)

21
+roles

2

+protocol

1

DataManager
(from Data Managers)

EntityManager
(from Data Managers)

Entity
(from Data Managers)ProtocolMessage

(from Protocol)

n

1

n
+type

1

/

n

0..1

n

0..1
MessageScope

MessageStep
(from Choreography)

+message
11

SubProtocol
(from Protocol)

n

0..1

n

+ProtocolScope
0..1

n

1

+usedBy
n

+uses

1

ProtocolStep
(from Choreography)

+subProtocol

11

StepScope
(from Choreography)

Step
(from Choreography)

+scope

n

1

n

1

 Figure 9: Combined Conceptual Meta-Model

ad/2001-02-19 Part IIIa

IIIa-64 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

4. Notation

CCA uses UML notation with a few extensions and conventions to make diagrams more
readable and compact for CCA aware tools. The UML mapping (Section 5) shown how
CCA is expressed in the UML Meta-Model which has standard notation. The following
are additions this base UML notation.

4.1 Process Component Specification Notation

A process component is based on the notation for a subsystem with extensions for ports
and properties. Consider the following diagram template for process component notation.

Component

Property Type

Receives Sends

Responder Initiator

Value

t

Figure 10: ProcessComponent specification notation

? ? A process component represents its external contract as a subsystems with the
following addition:

? ? The process component type may be represented as an icon in the component name
compartment. “t” above.

? ? Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle.. In the above,
“Receives”, “Sends”, “Responder” and “Initiator” are all ports. The type of the port is
not represented in the diagram.

? ? Flow ports are represented as an arrow going through a box. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have an
arrow pointing into the box. A sender has the background and text color inverted.

? ? Protocol ports are boxes extending out of the component. Protocol ports representing
an initiator have the colors of their background and text reversed. In the above,
“Initiator” is a protocol port of an initiator and “Responder” is a protocol port that is
not an initiator.

? ? Property Definitions s are in a separate compartment listing the property name, type
and default value (if any). The name, type and value are separated by lines. Each
property is on a separate line.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-65

4.2 Protocol Notation

sell_role_Orderbuy_role_Order

Order

OrderConfirmation

OrderDenied

Protocol OrderBT

Success

Failure

sell_role_Orderbuy_role_Order

Order

OrderConfirmation

OrderDenied

Protocol OrderBT

Success

Failure

Figure 11 Protocol Notation (1)

ad/2001-02-19 Part IIIa

IIIa-66 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

sell_Sales_rolebuy_Sales_role

buy_role_Order : OrderBT

sell_role_Shipping: ShippingNoticeBT

buy_role_Payment: PaymentNoticeBT

[OrderDenied] [OrderConfirmation]

Protocol Sales_protocol

Success

Failure

buy_role_Quote: QuoteBT sell_role_Quote: QuoteBT

sell_role_Order : OrderBT

buy_role_Shipping: ShippingNoticeBT

sell_role_Payment: PaymentNoticeBT

ProtocolRole
(initiator) ProtocolRole

Protocol
(with subProtocols)

Start

TerminateSuccess

TerminateFailure

SubProtocolRole
(initiator)

SubProtocolRole

ProtocolTransitions with guard

SubProtocolRole
(initiator)

Figure 12: Protocol notation (2)

Protocols are based on UML activity diagrams, consider the following template of a
protocol diagram with Choreography

A protocol uses the standard UML activity diagram notation with the following
conventions;

? ? The Protocol Roles are shown as swim lanes. The Initiator is the left most swim lane.
The name of the protocol role is the heading of the swim lane.

? ? The protocol is shown in terms of the initiator, using the initiator swim lane. Start
states and hare shown in this swim lane.

? ? A Message that is not a return is shown as a signal

? ? A Message return is shown as a signal reception under the message it is a return for.

? ? Sub Protocols are shown as action states.

? ? Sub Steps are shown nested within the containing step.

? ? The fail state is shown as a terminal state with the word “fail” in the center.

? ? Split is shown as a fork

? ? Transitions are shown as transitions.

4.3 Composite Component Notation

A composite is shown as a Process Component with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-67

Composite Component

Receives

Sends

Usage 1

Receives Sends

t Usage 2

Receives Sends

t

Usage 4 t

Responder Initiator

Usage 3

Receives Sends

Receives

M
es

sa
ge

 1

Message 2Responder

 Figure 13: Composite Component notation

? ? The ports on the composite component being defined are shown in the same way as
they are on a process component.

? ? The interior color of flow port arrows are inverted in color to show the port proxy.
“Receives” and “Sends” on “Composite Component” are ports of the composite
components with port proxies on the “inside”.

? ? The interior portion of a protocol port is inverted in color to show a port proxy.

? ? A component usage is shown as a smaller version of a process component inside the
composite component. Note Usage (1..4) are component usages.

? ? Port usages are shown in the same fashion as ports, on component usages. The ports
on Usage 1..4 are all port usages.

? ? Connectors are shown as lines between port usages or port proxies. All the lines in the
above are connectors.

? ? Property values may be shown on component usages, or may be suppressed.

? ? Message Scope & Protocol Scope are shown as annotations on a connection, within a
box. Note that the “initiator” port on “Usage 4” is a protocol. The connectors
containing Message 1 and Message 2 are being scoped to messages within the
initiator’s protocol so that “Usage 3” may deal with these as data flows.

ad/2001-02-19 Part IIIa

IIIa-68 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

4.4 Primitive Component Notation

Component

Property Type

Receives Sends

Responder Initiator

Value

t

Java
com.omg.stuff

Figure 14: PrimitiveComponent notation

A primitive component is shown in the same format as a process component. The
primitive component attributes are shown in the center of the central compartment.

4.5 Community Process Notation

A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

BuySellProcess

Buyer t

Buy

Seller t

Sell

Figure 15: CommunityProcess notation

In the above example “BuySellProcess” is a community process with component usage for
“Buyer” and “Seller” which are connected via their “buy” and “sell” ports, respectively.

4.6 Composition Notation

Being an abstract capability, composition has no specific notation. See component
realization.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-69

4.7 Choreography Notation

Choreography uses UML activity graph notation.

4.8 Data Model Notation

CCA Data Elements are in the form of a UML class with a “wavy bottom”, as is the
common representation of a document in a flow chart. The attributes of a composite are
shown in the single compartment using standard UML notation.

 attribute: type
 attribute : type
+composite : type
 attribute : type
 attribute : type

Document

Figure 16: DataModel notation

Composite attributes may be expanded to show composite detail.

4.9 Model Management Notation

Model Management uses standard UML notation.

4.10 Data Manager Notation

The managed type is shown as a component with the managed type inside of the
component.

Data Manager

Property Type

Responder Initiator

Value

 attribute: type
 attribute : type
+composite : type
 attribute : type
 attribute : type

Document

Figure 17: DataManager notation

The embedded document is managed by the data manager.

ad/2001-02-19 Part IIIa

IIIa-70 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Document management ports (Black and white rectangles extending through the data
manager’s boundary) are not labeled as the are shown connecting to the document.
Document management ports which modify the document are whie while ports that
report changes in the document are black.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-71

5. UML Profile Specification

5.1 Introduction

The UML Profile specifies how to use UML to produce specifications compliant with the
Component Collaboration Architecture (CCA).

This document refers to UML as in its specification version 1.4 [UML1.4].

Reference literature about related concepts, outside of OMG standards, may be found in
[OORAM], [CATALYSIS], [ROOM] and [UML-RT].

5.2 Relationship with Conceptual Meta-Model

This section specifies CCA as a UML profile, through a set of stereotypes, tagged values
and constraints. The UML profile is shown in relation to the Conceptual Meta-Model for
CCA, and provides the capability to support CCA by standard UML tools.

Most elements of the CCA Meta-Model directly correspond to UML elements or are
logical subtypes of them. When CCA and UML metamodel elements have the same name
it may be assumed that have the same semantics.

Please refer to previous sections, for a UML independent description of CCA semantics.

5.3 Choice of UML elements

The choice of UML model elements intends to facilitate the use of standard and existing
UML tools to specify models with the semantic constructs of CCA.

UML Classes and Attributes are used to describe the structured data that comprises the
information payload sent with messages. UML Class is stereotyped for CompositeData.

The profile uses primarily the UML Subsystem, as the unit for both classification and
organization. Subsytem is stereotyped for Protocol, RequestReplyProtocol, FlowProtocol,
ProcessComponent, Composition, ComponentUsage, ComposedComponent,
PrimitiveComponent and CommunityProcess.

UML Class is stereotyped for ProtocolRole, ProtocolPort, RequestReplyPort, FlowPort,
PortUsage and PortProxy.

UML Association is stereotyped for Connection.

UML Class is stereotyped for PropertyHolder (a necessary addition to the UML profile).

UML Attribute is stereotyped for PropertyDefinition and PropertyValue.

ad/2001-02-19 Part IIIa

IIIa-72 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

The behavioral element in the CCA profile is the UML Reception stereotyped as
ProtocolMessage, and associated Signals.

UML Collaborations can be used to provide optional views of Protocols and Compositions.

UML ActivityGraph and StateMachine elements are used to specify the Choreography of
messages and sub-Protocols in CCA, for Protocols, ProcessComponents and
ComponentUsages.

UML ActivityGraph can be used to provide a high level representation on the
Choreography of whole Compositions.

Standard UML Model Management artifacts, like Model and Package, can be used to
organize CCA models.

A number of convenience abstract Stereotypes have been defined, to serve as common
supertypes and provide containment and inheritance at the more general levels.

5.4 Profile structure

The UML Profile for the Component Collaboration Architecture is organized in the
following packages :

? ? Component Specification – of a collaborative party as a fully encapsulated,
configurable artifact.

? ? Protocol - for the specification of the set of messages that can be exchanged between
collaborating parties.

? ? Component Realization – specifying the realization of components as a primitive
implementation, or as a composition of other components. To build a community out of
components.

? ? Composition – as a network of encapsulated artifacts.

? ? Choreography – to specify the valid sequences of messages and activities in a set of
collaborating parties

? ? Document Model – that allows the specification of message payload documents.

? ? Common - convenience abstract semantic supertypes.

? ? Owners – convenience abstract container supertypes.

5.4.1 Packages model

The following is a model showing the Packages of the Profile, the ones used from the
standard UML Meta-Model, and the dependencies between Packages.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-73

CCA
(from Logical View)

<<profile>>

DocumentModel
<<profile>>

Choreography
<<profile>>

Core
(from Foundation)

Model Management
(from Logical View)

Common Behavior
(from Behavioral Elements)

ComponentRealization
<<profile>>

ComponentSpecification
<<profile>>

Composition
<<profile>>

Owners
<<profile>>

Protocol
<<profile>>

Activity Graphs
(from Behavioral Elements)

State Machines
(from Behavioral Elements)

<<access>>

<<acccess>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

Common
<<profile>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

Figure 18: Structure and dependencies of the CCA «profile» Packages

5.5 ComponentSpecification «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

ad/2001-02-19 Part IIIa

IIIa-74 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5.5.1 Virtual metamodel

aggregates

ProcessComponent
<<tagDefinition>> granularity : Granularity
<<tagDefinition>> persistent : Boolean

<<stereotype>>

Property
(from Common)

<<stereotype>>

ProtoPort
(from Common)

<<stereotype>>

ProtocolPort
<<stereotype>>

FlowPort
<<stereotype>>

ProtoComponent
(from Common)

<<stereotype>>

PropertyDefinition
<<stereotype>>

Granularity
Program
Owned
Shared

<<enumeration>>

Port
<<tagDefinition>> synchronous : Boolean
<<tagDefinition>> transactional : Boolean
<<tagDefinition>> multiple : Boolean

<<stereotype>>

aggregates
indirectly
through
PropertyHolder

Figure 19: Class Diagram of the Virtual metamodel for ComponentSpecification «profile» Package

5.5.2 Applicable subset

From Model Management

? ? Subsystem – stereotyped as ProcessComponent

From Foundation::Core

? ? Class – stereotyped as Port, ProtocolPort and FlowPort

? ? Attribute – stereotyped as PropertyDefinition

5.5.3 Accessed Packages

The ComponentSpecification «profile» Package accesses the Common «profile» Package.

5.5.4 Rationale

ProcessComponent is a Stereotype of Subsystem, that may contain ProtocolPort and
FlowPort, as its boundary objects.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-75

PropertyDefinition is an Attribute used for configuration of the ProcessComponent.

Because a UML Subsystem is constrained and can not contain Attributes, a Class
stereotyped as PropertyHolder has to be introduced, contained in the ProcessComponent,
and actually containing the PropertyDefinition.

5.5.5 «ProcessComponent»

BaseClass Supertype Abstract

Model Management::Subsystem «ProtoComponent» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Inherits from «ProtoComponent» the capabilities to own :

? ? Specializations of «ProtoPort» : «ProtocolPort» and «FlowPort»

? ? The utility Class of «PropertyHolder», to indirectly own «PropertyDefinition»

? ? «Composition», yet only its specialization «ComposedComponent» will actually
have «Composition».

Tagged Values

name = "granularity"

tagType = Granularity multiplicity = 1 tagValue= "Program"

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

name = "persistent"

tagType = Boolean multiplicity = 1 tagValue= FALSE

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

Standard UML Generalization can be used to produce more specific
ProcessComponent, by specialization of a more generic one. The
ProcessComponent child of the Generalization will inherit the Port of the
Generalization parent ProcessComponent. The child will also inherit the
PropertyHolder of the parent, and therefore its PropertyDefinition.

Constraints

In compliance to UML visibility and access rules between Packages, the
ProcessComponent must have access to the Protocol containing the ProtocolRole
realized by each ProtocolPort in the ProcessComponent.

ad/2001-02-19 Part IIIa

IIIa-76 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

For each Protocol with ProtocolRole realized by ProtocolPorts of the
ProcessComponent, there must be an access Dependency with the ProcessComponent
as client and the used Protocol as provider.

There is no need to define additional constraints in CCA. The constraints defined by
UML already prevent the usage of ProtocolRole from ProtocolPort of
ProcessComponent, if the ProcessComponent is not client of an «access» Dependency
of which the Protocol is supplier.

5.5.6 «Port»

BaseClass Supertype Abstract

Foundation::Core::Class «ProtoPort» Abstract

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Inherits from «ProtoPort» the capability to contain «ProtocolMessage»

Tagged Values

name = "synchronous"

tagType = Boolean multiplicity = 1 tagValue= "Program"

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

name = "transactional"

tagType = Boolean multiplicity = 1 tagValue= FALSE

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

name = "multiple"

tagType = Boolean multiplicity = 1 tagValue= FALSE

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

To specify the reference 'realizes' in the CCA Conceptual Meta-Model, from a
ProtocolPort, to the ProtocolRole that the specifies the ProtocolMessages that may
flow through the ProtocolPort, the UML Profile for CCA utilizes a standard
Generalization, with the Generalization parent being the ProtocolRole, and the
Generalization child the ProtocolPort. Same applies for FlowPort and FlowRole.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-77

When using standard UML Generalization, to produce a more specific
ProcessComponent, by specialization of a more generic one, a standard UML
Generalization can be used to extend, in the child ProcessComponent, a Port
specified in the parent ProcessComponent. The child Port of the Generalization
may realize additional ProtocolRole, therefore extending the set of
ProtocolMessage that may flow through the Port.

5.5.7 «ProtocolPort»

BaseClass Supertype Abstract

Foundation::Core::Class «Port» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The 'realizes' reference in the CCA Conceptual Meta-Model, from «ProtocolPort» to
«ProtocolRole» is specified in the UML Profile for CCA, with a Generalization
relationship with its parent being the «ProtocolRole» and its child the «ProtocolPort».

Constraints

A «ProtocolPort» realizes a «ProtocolRole»

5.5.8 «FlowPort»

BaseClass Supertype Abstract

Foundation::Core::Class «Port» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Note that in the UML Profile for CCA, «FlowPort» references directly a 'type'
«DataElement», specifying the information that will be sent or received through the
«FlowPort».

But in UML, every kind of port specifies its interaction capabilities by realizing a
«ProtocolRole» in a «Protocol», owning «ProtocolMessage» Stereotype of Reception.

To enforce the concept of «FlowPort», additional Stereotypes named «FlowProtocol»
and «FlowRole» are introduced in the UML Profile for CCA.

ad/2001-02-19 Part IIIa

IIIa-78 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

A «FlowProtocol» will 'realize' only «FlowRole». It is in «FlowRole» where the
constrains of the CCA Conceptual Meta-Model for «FlowPort» will be effectively
enforced.

The 'type' reference in the CCA Conceptual Meta-Model, from «FlowPort» to
«DataElement», is substituted in the UML Profile for CCA, with a Generalization
relationship with its parent being the «FlowRole» and its child the «FlowPort», the
very same mechanism to specify the 'realizes' reference from «ProtocolPort» to
«ProtocolRole».

Constraints

A «FlowPort» realizes a «FlowRole».

5.5.9 «PropertyDefinition»

BaseClass Supertype Abstract

Foundation::Core::Attribute «Property» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The attribute 'initial' in the CCA Conceptual Meta-Model corresponds in the UML
Profile for CCA, to the 'initialValue' metaattribute of Attribute.

Because constraints in UML prevent Subsystem from having StructuralFeature,
ProcessComponent is not able to directly contain PropertyDefinition (an Stereotype of
the Attribute StructuralFeature). To allow ProcessComponent to contain
PropertyDefinition, a Stereotype of Class, named PropertyHolder (see profile Package
Common in Section 5.12in page 103). PropertyHolder will contain the
PropertyDefinition, providing this way a means for the ProcessComponent to contain
PropertyDefinition, albeit indirectly.

When using standard UML Generalization, to produce a more specific
ProcessComponent, by specialization of a more generic one, a standard UML
Generalization can be used to extend or override, in the child ProcessComponent, the
PropertyDefinition specified in the parent ProcessComponent. The child
ProcessComponent will have a PropertyHolder, itself child of a Generalization whose
parent must be the PropertyHolder in the parent ProcessComponent. The child
PropertyHolder may add new PropertyDefinition, or PropertyDefinition with the same
name of those in the parent PropertyHolder. In the later case, it will be considered an
override. When deriving the 'full descriptor' of the child PropertyHolder Class, the
specification of the PropertyDefinition in the child will take precedence over the
specification of the PropertyDefinition of the parent PropertyHolder.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-79

5.5.10 «enumeration» Granularity

Semantics

Corresponds to the acceptable tagValues for 'granularity' in «ProcessComponent».

Values

Program

Owned

Shared

5.6 Protocol «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

5.6.1 Virtual metamodel

ProtocolMessage
<<stereotype>>

<<tagDefinition>> postCondition : Status = Any

Reception
(from Common Behavior)

<<stereotype>>

Protocol
<<stereotype>>

PortOwner
(from Owners)

<<stereotype>>

RequestReplyProtocol
<<stereotype>>

ProtoPort
(from Common)

<<stereotype>>

SubProtocolRole
<<stereotype>>

ProtocolRole
<<stereotype>>

<<tagDefinition>> initiator : Boolean = FALSE

aggregatesaggregates

FlowProtocol
<<stereotype>>

FlowRole
<<stereotype>>

Role
<<stereotype>>

aggregates

Figure 20: Class Diagram of the Virtual metamodel for Protocol «profile» Package

5.6.2 Applicable subset

From Model Management

? ? Subsystem – stereotyped as Protocol, RequestReplyProtocol and FlowProtocol

ad/2001-02-19 Part IIIa

IIIa-80 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

From Foundation::Core

? ? Class – stereotyped as Role, ProtocolRole, FlowRole and SubProtocolRole

From Behavioral Elements::Common Behavior

? ? Reception – stereotyped as ProtocolMessage

5.6.3 Accessed Packages

The Protocol «profile» Package accesses the Owners and Common «profile» Packages.

5.6.4 Rationale

A Protocol is a Stereotype of Subsystem, containing Stereotypes of Class specifying the
roles of the Protocol.

Role is an abstract supertype to provide common a ancestry for the various role kinds.

ProtocolRole and FlowRole are the roles of the Protocol, and specify the messages that
may flow between parties.

ProtocolRole allows any kind of interactions, and may contain a number of
ProtocolMessage.

A ProtocolMessage is a Stereotype of the Reception BehavioralFeature, and specifies the
capability to receive a Signal with an Attribute typed as a DataElement, and the capability
to react to this, by raising one among a set of Signals, each one with an Attribute typed as
a different DataElement.

The special RequestReplyProtocol is constrained for simple bi-directional interactions.

The special FlowProtocol is constrained for protocols with a single flow of information.

FlowProtocol and FlowRole does not exist in CCA Conceptual Meta-Model. They are
introduced here in support of FlowPort.

FlowRole exists only within FlowProtocol, and constrained to have a single message,
while its party (the "other" role in its protocol) will have none.

SubProtocolRole does not exist in CCA Conceptual Meta-Model, and has been introduced
to support the concept of SubProtocol of the CCA Conceptual Meta-Model.

SubProtocolRole allows to nest other Protocol as a sub-Protocol, by nesting it into a
ProtocolRole. Only Protocol can have SubProtocols, RequestReplyProtocol and
FlowProtocol are simpler cases that are not allowed to have SubProtocol.

5.6.5 «Protocol»

BaseClass Supertype Abstract

Model Management::Subsystem «PortOwner» Concrete

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-81

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Inherits from «PortOwner» the capability to own «ProtocolRole» and «FlowRole» .

Standard UML Generalization can be used to produce a more specific Protocol, by
specialization of a more generic one. The Protocol child of the Generalization will
inherit the various Role of the Generalization parent Protocol.

5.6.6 «Role»

BaseClass Supertype Abstract

Foundation::Core::Class «ProtoPort» Abstract

Semantics

There is no model element of the same name in the CCA Conceptual Meta-Model.

«Role» has been introduced in the UML Profile for CCA, to provide a common
ancestor to «ProtocolRole», «FlowRole» and «SubProtocolRole».

The CCA Conceptual Meta-Model does not need this common ancestor, as it does not
specify explicit model elements for «FlowRole» and «SubProtocolRole».

These have been introduced in the UML Profile for CCA in support of the FlowPort
and SubProtocol model elements of the CCA Conceptual Meta-Model. Please read their
specific headers for details.

When using standard UML Generalization, to produce a more specific Protocol, by
specialization of a more generic one, a standard UML Generalization can be used to
extend, in the child Protocol, a Role specified in the parent Protocol. The child Role of
the Generalization may define additional ProtocolMessage.

5.6.7 «ProtocolRole»

BaseClass Supertype Abstract

Foundation::Core::Class «Role» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

ad/2001-02-19 Part IIIa

IIIa-82 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Tagged Values

name = "initiator"

tagType = Boolean multiplicity = 1 tagValue= FALSE

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

5.6.8 «ProtocolMessage»

BaseClass Supertype Abstract

Behavioral Elements::Common Behavior::Reception - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The type of the «ProtocolMessage» will be expressed by a Signal, with an Attribute
typed as a «CompositeData», a DataType, a User defined DataType, or an enumeration.

A «ProtocolMessage» may specify a number of 'raisedSignal'. A raised Signal must
have an Attribute typed as a «CompositeData», a DataType, a User defined DataType,
or an enumeration.

Through specification of raised Signals, it is possible to express candidate responses to
the reception of a «ProtocolMessage».

Specification of more complex sequencing of «ProtocolMessage» may be done with
the «Choreography» Stereotype of ActivityGraph. Please refer to section
"Choreography «profile» Package" for details.

Tagged Values

name = "postCondition"

tagType = Choreography::Status multiplicity = 1 tagValue= "Any"

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

5.6.9 «SubProtocolRole»

BaseClass Supertype Abstract

Foundation::Core::Class Port Concrete

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-83

Semantics

There is no model element of the same name in the CCA Conceptual Meta-Model.

It has been introduced in the UML Profile for CCA in support of the SubProtocol
concept, of the CCA Conceptual Meta-Model, from where it takes its name. Wherever
a SubProtocol would be used in the CCA Conceptual Meta-Model, a
«SubProtocolRole» must be used, for compliance to UML and the Profile for CCA.

If a «ProtocolRole» must specify a «Protocol» as its (CCA Conceptual M-M)
SubProtocol, then a «SubProtocolRole» must be aggregated into the «ProtocolRole».

Note that «ProtocolRole» inherits from the abstract Stereotype «PortNester», and is
thus able to contain other specializations of «ProtoPort», in this case a
«SubProtocolRole» .

The «SubProtocolRole» will be bound by a Generalization relationship to one of the
«ProtocolRole» of the «Protocol» to be aggregated as sub-Protocol. The
«SubProtocolRole» must be the child of the Generalization, and the «ProtocolRole» of
the sub-Protocol must be the parent.

This pattern is equivalent to the SubProtocol construct of the CCA Conceptual Meta-
Model, and captures all the meta-information, and is more precise, as it allows direct
binding to one of the «ProtocolRole» of the sub-Protocol. In the CCA Conceptual
Meta-Model a convention was , to match the protocol 'initiator' role, with the
corresponding sub-Protocol 'initiator'.

Constraints

In compliance to UML visibility and access rules between Packages, a Protocol with
SubProtocolRole must have access to the Protocols that become sub-Protocol through
SubProtocolRole.

For each Protocol that becomes a sub-Protocol of a top Protocol, through
SubProtocolRole, there must be an access Dependency with the top Protocol as client
and the sub- Protocol as provider.

(Constraint defined by UML)

5.6.10 «RequestReplyProtocol»

BaseClass Supertype Abstract

Model Management::Subsystem «Protocol» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

ad/2001-02-19 Part IIIa

IIIa-84 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5.6.11 «FlowProtocol»

BaseClass Supertype Abstract

Model Management::Subsystem «RequestReplyProtocol» Concrete

Semantics

There is no model element of the same name in the CCA Conceptual Meta-Model.

It has been introduced in the UML Profile for CCA in support of the «FlowPort»,
which is constrained to realize «FlowRole».

A «FlowProtocol» has two «FlowRole». One has a single «ProtocolMessage», the other
will have no «ProtocolMessage».

Please read section "ComponentSpecification «profile» Package", header «FlowPort»
for related details.

5.6.12 «FlowRole»

BaseClass Supertype Abstract

Foundation::Core::Class «Role» Concrete

Semantics

There is no model element of the same name in the CCA Conceptual Meta-Model.

It has been introduced in the UML Profile for CCA in support of the «FlowPort.

A «FlowRole» has at most a single «ProtocolMessage», and is contained in a
«FlowProtocol».

Please read about «FlowProtocol» immediately above, and section
"ComponentSpecification «profile» Package", header «FlowPort» for related details.

5.6.13 Collaboration view of a Protocol

A Collaboration (from UML Package Behavioral Elements::Collaborations) may serve as
an alternate representation of a «Protocol», using the Collaboration model elements and
notation, but without adding any additional specification information.

The Collaboration will have ClassifierRoles with their base referencing the «ProtocolRole»
of the «Protocol».

AssociationRoles and AssociationEndRoles in the Collaboration need to reference as their
base to Associations and AssociationEnds.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-85

To allow the representation of a «Protocol» as a Collaboration, such Associations may be
created within the «Protocol», with connection AssociationEnds referring as their type to
the «ProtocolRoles».

The AssociationEnds must have visibility private to the «Protocol».

5.6.14 «Choreography» of a Protocol

A «Choreography» Stereotype of ActivityGraph can be used to specify, for a «Protocol»,
the valid sequences of messages and activation of sub-Protocols.

It provides a richer mechanism than the one provided by the 'raisedSignal' of
«ProtocolMessage». Please refer to section "Choreography «profile» Package" for details.

5.7 ComponentRealization «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

5.7.1 Virtual metamodel

PrimitiveComponent
<<stereotype>>

ComposedComponent
<<stereotype>>

CommunityProcess
<<stereotype>>

ProcessComponent
(from ComponentSpecification)

<<stereotype>>
Composition

(from Composition)

<<stereotype>>

Figure 21: Class Diagram of the Virtual metamodel for ComponentRealization «profile» Package

5.7.2 Applicable subset

From Model Management

? ? Subsystem – stereotyped as PrimitiveComponent, ComposedComponent and
CommunityProcess

5.7.3 Accessed Packages

The ComponentRealization «profile» Package accesses the ComponentSpecification and
Composition «profile» Packages.

5.7.4 Rationale

PrimitiveComponent, ComposedComponent and CommunityProcess are Stereotypes of
Subsystem.

ad/2001-02-19 Part IIIa

IIIa-86 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

PrimitiveComponent is constrained, such that it can not have an internal Composition, but
rather refers to a non-CCA artifact as the specification of its realization.

ComposedComponent is the only concrete kind of component, that may actually have an
internal Composition. The compositionspecifies the realization of the
ComposedComponent in terms of an assembly of other components.

CommunityProcess is just a Composition, constrained such that it does not need, and does
not have PortProxies.

5.7.5 «PrimitiveComponent»

BaseClass Supertype Abstract

Model Management::Subsystem «ProcessComponent» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

A PrimitiveComponent will not have internal Composition. Rather it will specify or
delegate its actual implementation to non CCA artifacts (i.e. native code, or other UML
constructs).

Tagged Values

name = "implementationType"

tagType = String multiplicity = 1 tagValue=

Corresponds to the meta-attribute of the same name in the CCA Conceptual Meta-
Model.

name = "implementationLocation"

tagType = String multiplicity = 1 tagValue=

Corresponds to the meta-attribute of the same name in the CCA Conceptual Meta-
Model.

5.7.6 «ComposedComponent»

BaseClass Supertype Abstract

Model Management::Subsystem «ProcessComponent» Concrete

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-87

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Note that while in the CCA Conceptual Meta-Model, ComposedComponent directly
specializes Composition, in the UML Profile for CCA, «ComposedComponent» is a
«CompositionOwner», and contains «Composition».

Because of this, «ComposedComponent» does not directly contain «PortProxy», which
are actually contained by its internal «Composition».

5.7.7 «CommunityProcess»

BaseClass Supertype Abstract

Model Management::Subsystem «Composition» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

A «CommunityProcess» inherits from «Composition» the ability to have
«ComponentUsage», «Connection» and «PortProxy».

A «CommunityProcess» is constrained such that it must not have «PortProxy». A
«PortProxy» is used to bind from within a «Composition», to the external «Port» of its
container «ComposedComponent». As a «CommunityProcess» is not contained within
a «ComposedComponent», it does not have «PortProxy».

5.8 Composition «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

ad/2001-02-19 Part IIIa

IIIa-88 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5.8.1 Virtual metamodel

<<stereotype>> ConnectionOwner
(from Owners)

<<stereotype>>

Composition
<<stereotype>>

ComponentOwner
(from Owners)

<<stereotype>>

PortProxy
<<stereotype>>

ProxyOwner
(from Owners)

<<stereotype>>

Connection
<<stereotype>>

Association
(from Core)

<<stereotype>>
aggregates

aggregates

ContextualBinding
<<stereotype>>

Binding
(from Core)

PropertyValue
<<stereotype>>

aggregates
indirectly
through
PropertyHolder

Property
(from Common)

<<stereotype>>

ComponentUsage
<<stereotype>>

PortUsage
<<stereotype>>

ProtoComponent
(from Common)

<<stereotype>>

aggregates

ProtoPort
(from Common)

<<stereotype>>

aggregates

links

client

providerargument

ProcessComponent
(from ComponentSpecification)

<<stereotype>>

Figure 22: Class Diagram of the Virtual metamodel for Composition «profile» Package

5.8.2 Applicable subset

From Model Management

? ? Subsystem – stereotyped as Composition and ComponentUsage

From Foundation::Core

? ? Class – stereotyped as PortUsage and PortProxy

? ? Attribute – stereotyped as PropertyValue

? ? Association - stereotyped as Connection

? ? Binding – stereotyped as ContextualBinding

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-89

5.8.3 Accessed Packages

The ComponentSpecification «profile» Package accesses the Common and Owners
«profile» Packages.

5.8.4 Rationale

A Composition is a Stereotype of Subsystem, where «ProcessComponent» and its «Port»
are used as «ComponentUsage» and «PortUsage», respectively. «ComponentUsage» is a
Stereotype of Subsystem, and is a specialization of «ProtoComponent», thus having a
common ancestry with «ProcessComponent». «PortUsage» is a Stereotype of Class, and is
a specialization of «ProtoPort», thus having a common ancestry with «Port».

The «PortUsage» are bound to other «PortUsage» with «Connection», a Stereotype of
Association, forming an assembly.

«ProtocolMessage» may flow between the «PortUsage» through the «Connection»,
according to the «ProtocolRole» realized by the used «Port», and their «Choreography».

If the «Composition» is contained by a «ComposedComponent», then the «Composition»
may contain «PortProxy», an Stereotype of Class, specialization of «ProtoPort», thus
having a common ancestry with «Port».

«PortProxy» must be bound through «Connection», to the «Port» of the container
«ComposedComponent», such that «ProtocolMessage» may flow from and to the «Port» of
the container «ComposedComponent», to the «ComponentUsage» of the «Composition».

PropertyValue is a Stereotype of Attribute, used to specify configuration values, in the
Composition, for the PropertyDefinition specified on the used ProcessComponent. As the
Composition is a Subsystem, and UML constraints prevent a Subsystem from having
Attribute, a utility Stereotype of Class, the PropertyHolder, is owned by the
ComponentUsage. This is a mechanism identical to the one explained for
PropertyDefinition in ProcessComponent.

ContextualBinding is a Stereotype of Binding, to resolve in a Composition, how to
substitute the ProcessComponent used by a ComponentUsage, with a different
ProcessComponent.

5.8.5 «Composition»

BaseClass Abstract

Model Management::Subsystem Concrete

Supertypes

? ? ComponentOwner – so it can contain Component

? ? ConnectionOwner – so it can contain Connection

? ? ProxyOwner – so it can contain PortProxy

ad/2001-02-19 Part IIIa

IIIa-90 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

As a difference with the CCA Conceptual Meta-Model, the Composition in the UML
Profile for CCA, is not inherited by ComposedComponent, but rather, a
ComposedComponent will contain a Composition.

Constraints

In compliance to UML visibility and access rules between Packages, the Composition
must have access to the ProcessComponent used by each ComponentUsage in the
Composition.

For each ProcessComponent used by ComponentUsage in the Composition, there must
be an access Dependency with the Composition as client and the ProcessComponent as
provider.

(Constraint defined by UML)

5.8.6 «ComponentUsage»

BaseClass Supertype Abstract

Model Management::Subsystem «ProtoComponent» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

ComponentUsage and ProcessComponent share the common ancestor
ProtoComponent.

To specify the reference 'uses' in the CCA Conceptual Meta-Model, from a
ComponentUsage, to the ProcessComponent used in the Composition, the UML Profile
for CCA utilizes a standard Generalization, with the Generalization parent being the
used ProcessComponent, and the Generalization child the ComponentUsage.

A ComponentUsage may own a Stereotype of Class, named PropertyHolder, itself
owning PropertyValue, to configure values for the specific conditions and intended
behavior of the ProcessComponent in the specific usage in the Composition.

5.8.7 «PropertyValue»

BaseClass Supertype Abstract

Foundation::Core::Attribute «Property» Concrete

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-91

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The attribute 'value' in the CCA Conceptual Meta-Model corresponds in the UML
Profile for CCA, to the 'initialValue' metaattribute of Attribute.

To specify in a ComponentUsage, a value with a PropertyValue, for a
PropertyDefinition of the same name, in the used ProcessComponent, a PropertyHolder
Stereotype of Class must be created and owned by the ComponentUsage.

The PropertyHolder in the ComponentUsage must be the child of a Generalization
relationship whose parent will be the PropertyHolder in the used ProcessComponent.

By having the same name in the PropertyDefinition and PropertyValue – both
Stereotype of Attribute -, the PropertyValue will be considered an override of the
PropertyDefinition.

Both PropertyDefinition and PropertyValue must have the same 'type' and multiplicity.

Only the 'initialValue' metaattribute may differ, and the one in PropertyValue will take
precedence when obtaining the 'full descriptor' of the PropertyHolder Class, and
therefore will determine the actual value to initialize the property for the
ComponentUsage.

5.8.8 «PortUsage»

BaseClass Supertype Abstract

Foundation::Core::Class «ProtoPort» Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

To specify the reference 'represents' in the CCA Conceptual Meta-Model, from a
PortUsage in the ComponentUsage, to the Port of the used ProcessComponent, the
UML Profile for CCA utilizes a standard Generalization, with the Generalization
parent being the Port in the used ProcessComponent, and the Generalization child the
PortUsage in the ComponentUsage.

5.8.9 «PortProxy»

BaseClass Supertype Abstract

Foundation::Core::Class «ProtoPort» Concrete

ad/2001-02-19 Part IIIa

IIIa-92 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

To specify the reference 'represents' in the CCA Conceptual Meta-Model, from a
PortProxy in a Composition in a ComposedComponent, to an external Port of the
enclosing ComposedComponent, the UML Profile for CCA utilizes standard
Generalizations, with the Generalization child being the PortProxy, and the
Generalization parents being the "conjugate" Roles, of all the Roles realized by the
external Port.

"Conjugate" Role is meant as in the Real-Time Object Oriented Method (ROOM),
where for a Port realizing a Role in a Protocol, the "conjugate" is the "other" Role of
the Protocol, that is not realized by the Port.

With this approach, PortProxy and its represented Port are "connectable", each one
realizing one of the parties of a Protocol. The PortProxy represents, within the
Composition, the peer Port of other components, that may eventually be connected to
the Port of the enclosing ComposedComponent.

This construct allows to connect to the PortProxy, an internal PortUsage, or other
PortProxy, as if they were effectively communicating ProtocolMessage with the
eventual peers of the enclosing ComposedComponent.

The Port in the ComposedComponent becomes a transparent "pass-through" for the
ProtocolMessage traffic incoming and outgoing in/to the externally connectable peers.
(In ROOM terms : the Port of the enclosing ComposedComponent is a relay Port).

5.8.10 «Connection»

BaseClass Supertype Abstract

Foundation::Core::Association - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Tagged Values

name = "protocolScope"

tagType = Protocol multiplicity = 1 tagValue=

Corresponds to the Association with AssociationEnd of same name, between
«Connection» and «Protocol», in the CCA Conceptual Meta-Model.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-93

name = "messageScope"

tagType = ProtocolMessage multiplicity = 1 tagValue=

Corresponds to the Association with AssociationEnd of same name, between
«Connection» and «Message», in the CCA Conceptual Meta-Model.

 Constraints

In compliance to UML visibility and access rules between elements in different
Packages, the PortUsage in different ComponentUsage have no visibility on the
PortUsage in other ComponentUsage.

None of the connection AssociationEnd of a Connection will be navigable.

(Constraint defined by UML)

5.8.11 «ContextualBinding»

BaseClass Supertype Abstract

Foundation::Core::Binding Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The 'context' of the ContextualBinding in the CCA Conceptual Meta-Model is
represented by the 'client' of the UML Binding, which is the Composition.

The 'fills' of the ConceptualBinding in the CCA Conceptual Meta-Model is
represented by the 'provider' of the UML Binding, which is a ComponentUsage.

The 'bindsTo' of the ConceptualBinding in the CCA Conceptual Meta-Model is
represented by the 'argument' of the UML Binding, which is a ProcessComponent.

Constraints

Only «Composition» can contain «ContextualBinding».

The 'client' of a «ContextualBinding» is a «Composition».

The 'provider' of a «ContextualBinding» is a (re) used «ProcessComponent» in a
«Composition».

The 'argument' of a «ContextualBinding» is a «ProcessComponent».

ad/2001-02-19 Part IIIa

IIIa-94 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5.8.12 Collaboration view of a Composition

A Collaboration (from UML Package Behavioral Elements::Collaborations) may serve as
an alternate representation of a «Composition», using the Collaboration model elements
and notation, but without adding any additional specification information.

The Collaboration will have ClassifierRoles with their base referencing «PortUsages» of
«ComponentUsages» in the «Composition».

If the «Composition» is a «ComposedComponent», the Collaboration will have
ClassifierRoles with their base referencing the «PortProxies» of the «Composition».

The AssociationRoles and AssociationEndRoles in the Collaboration, will reference as
their 'base' the Coonection, and its AssociationEnds, of the «Composition».

5.9 Choreography «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

5.9.1 Virtual metamodel

Status
<<enumeration>>

Sucess
TimeoutFailure
TechnicalFailure
BusinessFailure
AnyFailure
Any

TerminateFailure
<<stereotype>>

TerminateSuccess
<<stereotype>>

SubStep
<<tagDefinition>> scope : Port

<<stereotype>>

Join
<<stereotype>>

Split
<<stereotype>>

Start
<<stereotype>>

SubProtocolStep
<<tagDefinition>> subProtocol : Protocol
<<tagDefinition>> scope : Port

<<stereotype>>

MessageStep
<<tagDefinition>> scope : Port

<<stereotype>>
ChoreographyTransition

<<stereotype>>

Choreography
<<stereotype>>

ActivityGraph
(from Activity Graphs)

<<stereotype>>

FinalState
(from State Machines)

<<stereotype>><<stereotype>>

Pseudostate
(from State Machines)

<<stereotype>><<stereotype>> <<stereotype>>

Subactivi tyState
(from Activity Graphs)

<<stereotype>>

Transition
(from State Machines)

<<stereotype>><<stereotype>>

ActionState
(from Activity Graphs)

<<stereotype>>

Initiates
<<stereotype>>

Figure 23: Class Diagram of the Virtual metamodel for Choreography «profile» Package

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-95

5.9.2 Applicable subset

From Behavioral Elements::Activity Graphs

? ? ActivityGraph – stereotyped as Choreography.

? ? ActionState – stereotyped as SubProtocolStep

? ? SubActivityState – stereotyped as SubStep

From Behavioral Elements::State Machines

? ? Pseudostate – stereotyped as Start, Split and Join

? ? FinalState – stereotyped as TerminateSuccess and TerminateFailure

? ? Transition – stereotyped as MessageStep and ChoreographyTransition

An enumeration User defined DataType – Status

5.9.3 Accessed Packages

The Choreography «profile» Package accesses the Common «profile» Package.

5.9.4 Rationale

ActivityGraph has been chosen as the baseClass for «Choreography», because it provides
the means of specifying the possible sequences of activities and interactions in a system.

FinalState has been chosen as the baseClass for «TerminateSuccess» and
«TerminateFailure», as both are special conditions of the termination of an ActivityGraph.

Pseudostate, has been chosen as the baseClass for «Start», «Split» and «Join», with values
of its 'kind' metaattribute equal to #initial, #fork and #join, because these are sufficiently
similar to the intended semantics.

Transition has been chosen as the baseClass for «MessageStep» because it provides, with
an 'effect' or a 'trigger', the means to specify sending or receiving a message.

Transition has been chosen as the baseClass for «ChoreographyTransition» because it
provides with a 'guard', the means to specify conditional paths of activity.

ActionState, has been chosen as the baseClass for «SubProtocolStep» because the intention
is to express that the interactions of a whole subProtocol will take place as single activity,
and an activity is better expressed with an ActionState, and the help of a tagValue to refer
to the subProtocol.

SubactivityState, has been chosen as the baseClass for «SubStep», because it allows to nest
sub machines, drilling down in each level into more deeply nested scope.

5.9.5 «Choreography»

BaseClass Supertype Abstract

Behavioral Elements::Activity Graphs::ActivityGraph - Abstract

ad/2001-02-19 Part IIIa

IIIa-96 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Corresponds to the model element named Choreography in the CCA Conceptual Meta-
Model.

Constraints - plain

The 'context' of a «Choreography» is a «Protocol» or a «ProcessComponent», both of
them «PortOwner».

A «Choreography» has a Partition (also known as swim-lane) for each «Port» of its
'context' «PortOwner». The name of each Partition will be the name of the «Port» in its
'contents'.

5.9.6 «Start»

BaseClass Supertype Abstract

Behavioral Elements::State Machines::Pseudostate Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Constraints - plain

A «Start» Stereotype of Pseudostate is an Initial state.

5.9.7 «Split»

BaseClass Supertype Abstract

Behavioral Elements::State Machines::Pseudostate Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Constraints - plain

A «Split» Stereotype of Pseudostate is a Fork state.

5.9.8 «Join»

BaseClass Supertype Abstract

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-97

Behavioral Elements::State Machines::Pseudostate Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Constraints - plain

A «Join» Stereotype of Pseudostate is a Join state.

5.9.9 «TerminateSuccess»

BaseClass Supertype Abstract

Behavioral Elements::StateMachines::FinalState - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-Model.

5.9.10 «TerminateFailure»

BaseClass Supertype Abstract

Behavioral Elements::StateMachines::FinalState - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

5.9.11 «MessageStep»

BaseClass Supertype Abstract

Behavioral Elements::State Machines::Transition - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The «MessageStep» may be sent or received.

If the «MessageStep» is in the Partition corresponding to the initiator «Port», then the
«ProtocolMessage» is being sent, if not then the «ProtocolMessage» is being received.

ad/2001-02-19 Part IIIa

IIIa-98 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Tagged Values

name = "scope"

tagType = SubProtocolRole multiplicity = 0..1 tagValue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta-
Model, between Step and StepScope.

The value must be the name of a SubProtocolRole.

If the "scope" taggedValue has been defined, then «ProtocolMessage» whose
Signal is referenced as 'effect' SendAction, or 'trigger' SignalEvent, must be one of
the «ProtocolMessage» of the SubProtocolRole identified by "scope". ".

Constraints - plain

 If the «ProtocolMessage» is being sent, the «MessageStep» will have an 'effect'
SendAction, with its 'signal' referencing the Signal of the «ProtocolMessage».

If the «ProtocolMessage» is being received, the «MessageStep» will have a 'trigger'
SignalEvent, with its 'signal' referencing the Signal of the «ProtocolMessage».

Diagram Notation

If the «ProtocolMessage» is being sent, a Signal sending symbol for Transition.

If the «ProtocolMessage» is being received, a Signal receipt symbol for Transition.

5.9.12 «SubProtocolStep»

BaseClass Supertype Abstract

Behavioral Elements::Activity Graphs::ActionState - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

When producing the Choreography of a «Protocol» with sub-Protocol, there will be a
SubProtocolStep for each of the «ProtocolRole» of the Protocol embedded as sub-
Protocol.

A Transition stereotyped as «Initiates» must bind with the initiator «SubProtocolRole»
as its 'source', and the non-initiator «SubProtocolRole» as its 'target'.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-99

Tagged Values

name = "scope"

tagType = AbstractRole multiplicity = 0..1 tagValue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta-
Model, between Step and StepScope.

The value must be the name of the initiator ProtocolRole of the SubProtocol.

name = "subProtocol"

tagType = SubProtocolRole multiplicity = 0..1 tagValue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta-
Model, between ProtocolStep and SubProtocol.

The value must be the name of a SubProtocolRole.

If the "scope" taggedValue has been defined, then the "subProtocol" must refer to a
subProtocol of the SubProtocolRole identified by "scope"..

5.9.13 «SubStep»

BaseClass Supertype Abstract

Behavioral Elements::Activity Graphs::SubactivityState - Concrete

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

The Step referenced as 'sub' in the CCA Conceptual Meta-Model, will be vertex
contained in the submachine ActivityGraph of the SubStep.

If the "scope" taggedValue has been defined, then the Step in the submachine
ActivityGraph will resolve names in, and be constrained to, referencing
ProtocolMessages and SubProtocolRoles of the SubProtocolRole identified by "scope"..

5.9.14 «ChoreographyTransition»

BaseClass Supertype Abstract

Behavioral Elements::StateMachines::Transition - Concrete

ad/2001-02-19 Part IIIa

IIIa-100 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Corresponds to the model element named Transition in the CCA Conceptual Meta-
Model.

The guard of the Transition will be an expression that will evaluate true if an specific
ProtocolMessage has been actually sent or received.

Tagged Values

name = "precondition"

tagType = Status multiplicity = 1 tagValue=

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

5.9.15 «enumeration» Status

Semantics

Corresponds the Enumeration of same name in the CCA Conceptual Meta-Model.

Values

Success

TimeoutFailure

TechnicalFailure

BusinessFailure

AnyFailure

Any

5.9.16 «Initiates»

BaseClass Supertype Abstract

Behavioral Elements::State Machines::Transition - Concrete

Corresponds to a Transition between ProtocolStep, in a Protocol with subProtocol in the
CCA Conceptual Meta-Model.

Also used as Transition between the ActionStep corresponding to the activities performed
on activation of PortUsage or PortProxy, when creating the High Level Activity Graph of a
Composition (see section 5.11 "High-level ActivityGraph of a Composition" in page 102).

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-101

Semantics

When producing the Choreography of a Protocol with sub-Protocols, will bind to the
initiator «SubProtocolRole» as its 'source', and the non-initiator «SubProtocolRole» as
its 'target'

When producing an ActivityGraph as alternate representation of a Composition (see
section 5.11 "High-level ActivityGraph of a Composition" in page 102), corresponds to
a Connection between PortUsage -or PortProxy - in the Composition. The 'source' of
the «Initiates» Transition will be the ActionState corresponding to the the activity of
the 'initiator' PortUsage, and the 'target' will be the ActionState representing the
activity performed by the non-initiator peer connected PortUsage.

5.10 DocumentModel «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

5.10.1 Applicable subset

The DocumentModel Profile Package identifies the applicable subset of UML elements,
within the following accessed UML Packages :

From Foundation::Core

? ? Class – stereotyped as CompositeData

5.10.2 Virtual metamodel

Class
(from Core)

CompositeData
<<stereotype>>

<<stereotype>>

Figure 24: Class Diagram of the Virtual metamodel for DocumentModel «profile» Package

5.10.3 «CompositeData»

BaseClass Supertype Abstract

Foundation::Core::Class - Concrete

ad/2001-02-19 Part IIIa

IIIa-102 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Model.

Constraints - plain

The Attributes of a CompositeData will be typed as a DataType, Enumeration or a
«CompositeData».

A «CompositeData» may only have supertypes stereotyped as «CompositeData».

A «CompositeData» can not be an active class.

5.11 High-level ActivityGraph of a Composition

An alternate representation of a Composition (i.e., a CommunityProcess or a Component),
may be rendered using the model elements of UML ActivityGraph.

Please see example in section 7.1.7 "High level ActivityGraph of a Composition" in page
127.

To produce an ActivityGraph from a Composition, the following constructive rules can be
applied :

1. There will be a Partition (also known as swim-lane) for each ProcessComponent in
the Composition. The name of the Partition will be the name of the
ProcessComponent in the Partition 'contents'.

2. There will be an ActionState (also known as activity) for each Port ,of each
ProcessComponent in the Composition, The ActionState will be contents of the
Partition associated with the ComponentUsage owning the PortUsage. The name of
the ActionState will be the name of the Protocol on the PortUsage (more precisely,
the name of the Protocol owning the ProtocolRole realized by the ProtocolPort of
the PortUsage).

3. There will be a Transition stereotyped as «Initiates» for each Connection in the
Composition, with its 'source' in the ActionState corresponding to an initiator, and
its 'target' in the ActionState representing the activity performed by the peer
connected PortUsage.

4. If the Protocol of a PortUsage (more precisely: the Protocol owning the
ProtocolRole realized by the ProtocolPort used by the PortUsage) has subProtocols,
then there will be a SubactivityState, rather than an ActionState, to represent said
Port. The SubactivityState will contain a submachine with ActionStates
corresponding to each of the subProtocols. Transitions will enter and exit to/from
specific sub-activities to represent the various phases of subProtocol activity in the
dynamics of the composition.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-103

5. If the Composition pertains to a ComposedComponent, there will be a Partition for
each of the PortProxy in the Composition (representing the peers of ProtocolPorts
in the enclosing ComposedComponent).

6. If the Composition pertains to a ComposedComponent, there will be an ActionState
for each PortProxy, in the corresponding Partition. If the ProtocolRole realized by
the PortProxy has sub-ProtocolRole, there will be sub-ActionStates for each of the
sub-ProtocolRole. Transitions will enter and exit to/from specific sub-activities to
represent the various phases of subProtocol activity in the dynamics of the
composition.

5.12 Common «profile» Package

A convenience Package, to assist in the definition of Stereotypes for CCA concepts.

Contain a number of abstract Stereotypes, to be specialized in other Packages.

5.12.1 Virtual metamodel

CompositionOwner
(from Owners)

<<stereotype>>
PortOwner

(from Owners)

<<stereotype>>
PropertyHolderOwner

(from Owners)

<<stereotype>>

ProtoComponent
<<stereotype>>

MessageOwner
(from Owners)

<<stereotype>>

ProtoPort
<<stereotype>>

PortNester
(from Owners)

<<stereotype>>

Attribute
(from Core)

Property
<<stereotype>>

<<stereotype>>

Class
(from Core)

PropertyHolder
<<stereotype>>

<<stereotype>>

aggregates aggregates

aggregates

Figure 25: Class Diagram of the Virtual metamodel for Common «profile» Package

5.12.2 Applicable subset

From Model Management

? ? Subsystem – stereotyped as ProtoComponent

ad/2001-02-19 Part IIIa

IIIa-104 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

From Foundation::Core

? ? Class – stereotyped as ProtoPort and PropertyHolder

? ? Attribute – stereotyped as Property

5.12.3 Accessed Packages

The Common «profile» Package accesses the Owners «profile» Package.

5.12.4 «ProtoPort»

BaseClass Abstract

Foundation::Core::Class - Abstract

Supertypes

MessageOwner – a «ProtoPort» may contain «ProtocolMessage»

PortNester – a «ProtoPort» may contain other «ProtoPort». This capability is used by
«ProtocolRole» and «SubProtocolRole», such that it can contain «SubProtocolRole»,
and thus allowing specification of the concept of SubProtocol in the CCA Conceptual
Meta-Model.

Semantics

A common abstract supertype for «ProtocolRole», «Port», «ProtocolPort», «FlowPort»,
«PortUsage», «PortProxy», all of which may have «ProtocolMessage» – directly or
inherited.

To support the SubProtocol meta-model element, in the CCA Conceptual Meta-Model,
the facility of «ProtoPort» nesting other «ProtoPort», is introduced here, and exploited
by «ProtocolRole» in the Protocol «profile» package.

With the common «ProtoPort» ancestry, Generalizations may be legally specified and
constrained, as mapping of the relationships of the CCA Conceptual Meta-Model :

? ? 'realizes' «ProtocolRole» with «ProtocolPort» (also «FlowPort», in the profile).

? ? 'represents' «ProtocolPort» or «FlowPort» by «PortProxy» or «PortUsage»

Constraints

Only «PortOwner» and its specializations may contain «ProtoPort».

5.12.5 «ProtoComponent»

BaseClass Abstract

Model Management::Subsystem - Abstract

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-105

Supertypes

PortOwner – a «ProtoComponent» may contain «Port»

CompositionOwner – a «ProtoComponent» may contain «Composition»

PropertyHolderOwner - – a «ProtoComponent» may contain «PropertyHolder», itself a
container for «Property»

Semantics

A common abstract supertype for «ProcessComponent», «ComposedComponent»,
«PrimitiveComponent» and «ComponentUsage», all of which may have kinds of
«ProtoPort» – directly or inherited – and configuration properties/values.

Having the «Composition» containment at this single common supertype simplifies the
constraints for Generalizations among more specialized Stereotypes. An OCL constraint in
«ProcessComponent» and «PrimitiveComponent» exclude their inherited Composition
containment capabilities.

With the common «ProtoComponent» ancestry, Generalizations may be legally specified
and constrained, as mapping of the relationships of the CCA Conceptual Meta-Model :

? ? 'supertype' between «ProcessComponent» and more specific stereotypes

? ? 'uses' «ProcessComponent», «PrimitiveComponent» or «ComposedComponent» by
«ComponentUsage»

Constraints

Only «ComponentOwner», its specializations, Model Management::Package and
Model Management::Model may contain «ProtoComponent».

5.12.6 «PropertyHolder»

BaseClass Supertype Abstract

Foundation::Core::Class - Concrete

Semantics

Serves to hold the Stereotype of Attribute named «Property», within
«ProtoComponent», a Stereotype of Subsystem, which UML constrains and can not
have Attribute.

More specifically, «ProcessComponent», «ComposedComponent»,
«PrimitiveComponent» may contain «PropertyHolder» with «PropertyDefinition»,
while «ComponentUsage» may contain «PropertyHolder» with «PropertyValue».

Constraints

Only «PropertyHolderOwner» and its specializations may contain «PropertyHolder».

ad/2001-02-19 Part IIIa

IIIa-106 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

5.12.7 «Property»

BaseClass Supertype Abstract

Foundation::Core::Attribute - Abstract

Semantics

A common supertype for «PropertyDefinition» and «PropertyValue», both representing
an structural slot of configuration data.

The 'initialValue' metaattribute of Attribute will be used to specify the attribute 'initial'
of PropertyDefinition in the ComponentSpecification package of the CCA Conceptual
Meta-Model.

The 'initialValue' metaattribute of Attribute will be used to specify the attribute 'value'
of PropertyValue in the Composition package of the CCA Conceptual Meta-Model.

Constraints

Only «PropertyHolder» may contain «Property».

A «Property» has public visibility.

5.13 Owners «profile» Package

A convenience Package, to assist in the definition of Stereotypes for CCA concepts.

Contain a number of abstract Stereotypes, to be specialized by Stereotypes in other
Packages of the Profile.

These Stereotypes have their names as "xxxOwner" or "xxxNester", with the "xxx" part
specifying the kind of their contained artifacts.

This is intended to help in reading the Profile, as UML Stereotypes do not immediately
communicate the elements that may be aggregated by them.

Stereotypes elsewhere in the Profile, specialize these abstract "Owner" Stereotypes. Using
multiple inheritance from these "Owner" abstract Stereotypes, the actual combined
contents of Stereotypes can be readily expressed.

5.13.1 Applicable subset

From Model Management

? ? Subsystem – stereotyped as PortOwner, ComponentOwner, ConnectionOwner,
ProxyOwner, PropertyHolderOwner and CompositionOwner

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-107

From Foundation::Core

? ? Class – stereotyped as MessageOwner, PropertyOwner and PortNester.

5.13.2 Accessed Packages

The Owners «profile» Package accesses no other «profile» Packages.

5.13.3 Rationale

Subsystem has been chosen as the baseClass for PortOwner, ComponentOwner,
ConnectionOwner, ProxyOwner, PropertyHolderOwner and CompositionOwner, as it
provides both organization and classification capabilities thanks to its supertypes Package
and Classifier.

Class is the baseClass for MessageOwner, PropertyOwner, able to contain features.

Class is the baseClass for PortNester, as it provides Port containment capabilities to Port,
which is an stereotype of Class.

5.13.4 Virtual metamodel

MessageOwner
<<stereotype>>

Class
(from Core)

PortOwner
<<stereotype>>

Subsystem
(from Model Management)

ComponentOwner
<<stereotype>>

ProxyOwner
<<stereotype>>

ConnectionOwner
<<stereotype>>

PropertyHolderOwner
<<stereotype>>

CompositionOwner
<<stereotype>>

<<stereotype>><<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>

PortNester
<<stereotype>>

<<stereotype>><<stereotype>>

Figure 26: Class Diagram of the Virtual metamodel for Owners «profile» Package

5.13.5 «PortOwner»

BaseClass

Supertype Abstract

Model Management::Subsystem - Abstract

ad/2001-02-19 Part IIIa

IIIa-108 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Semantics

Container of «Port»», with Subsystem baseClass

5.13.6 «ComponentOwner»

BaseClass Supertype Abstract

Model Management::Subsystem - Abstract

Semantics

Container of «ProtoComponent».

5.13.7 «ConnectionOwner»

BaseClass Supertype Abstract

Model Management::Subsystem - Abstract

Semantics

Container of «Connection».

5.13.8 «ProxyOwner»

BaseClass Supertype Abstract

Model Management::Subsystem - Abstract

Semantics

Container of «Proxy».

5.13.9 «PropertyHolderOwner»

BaseClass Supertype Abstract

Model Management::Subsystem - Abstract

Semantics

Container of «PropertyHolder».

5.13.10 «CompositionOwner»

BaseClass Supertype Abstract

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-109

Model Management::Subsystem - Abstract

Semantics

Container of «Composition».

5.13.11 «MessageOwner»

BaseClass Supertype Abstract

Foundation::Core::Class - Abstract

Semantics

Container of «ProtocolMessage».

5.13.12 «PortNester»

BaseClass Supertype Abstract

Foundation::Core::Class - Abstract

Semantics

Container of «Port», with Class baseClass.

ad/2001-02-19 Part IIIa

IIIa-110 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

6. Constraints (OCL)

The format for expression of OCL in this document is not (yet) the same as
that for the other documents in this submission. This will be corrected in the
next revision of this document.

6.1 Invariant Constraints (OCL)

These are the formal OCL constraints specifying well-formedness rules for models
according to the UML Profile for CCA.

See section "Definition Constraints", below, for definitions used in these invariants.

6.1.1 ComponentSpecification «profile» Package

6.1.1.1 «Port»
context ProtocolPort
 inv:
 not defProtocolRoles->isEmpty()

6.1.1.2 «ProtocolPort»
context ProtocolPort
 inv:
 defProtocolRoles->forAll(aPR | aPR.isStereoTyped("ProtocolRole"))

6.1.1.3 «FlowPort»
context FlowPort
 inv:
 defProtocolRoles->forAll(aPR | aPR.isStereoTyped("FlowRole"))

6.1.2 Common «profile» Package

6.1.2.1 «ProtoPort»
context ProtoPort
 inv:
 not namespace->isEmpty() and namespace.isStereoKinded("PortOwner")

6.1.2.2 «ProtoComponent»
context ProtoComponent
 inv:
 not namespace->isEmpty() and (

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-111

 namespace.isStereoKinded("ComponentOwner") or
 namespace.isOCLType(Model Management::Package) or
 namespace.isOCLType(Model Management::Model))

6.1.2.3 «PropertyHolder»
context PropertyHolder
 inv:
 not namespace->isEmpty() and owner.namespace.isStereoKinded("PropertyHolderOwner")

6.1.2.4 «Property»
context Property
 inv:
 not owner->isEmpty() and owner.isStereoKinded("PropertyHolder") and

 inv:
 visibility = #public

6.2 Definition Constraints (OCL)

To improve legibility of constraints in the profile, the following definition constraints are
defined in the context of various UML model elements and Profile Stereotypes.

Whenever a token with the name of the definition constraints below is found in a
constraint elsewhere in the profile, its value will be derived from the OCL expression in
the definition constraint.

6.2.1 General OCL Definition Constraints

These definition constrains have been taken from the OMG Document ad/2000-02-02,
UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data Access
Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS AG, Lucent
Technologies, Inc. and Persistence Software.

context ModelElement
 def:
 let allStereotypes : Set(Stereotype) =
 -- set with the Stereotype applied to the ModelElement and
 -- all the stereotypes inherited by that Stereotype
 self.stereotype->union(self.stereotype.generalization.parent.allStereotypes)

 let isStereoTyped(theStereotypeName : String) : Boolean =
 -- returns true if an Stereotype with name equal to the argument
 -- has been applied to the ModelElement
 self.stereotype.name = theStereotypeName

 let isStereoKinded(theStereotypeName : String) : Boolean =
 -- returns true if an Stereotype has been applied to the ModelElement
 -- with its name equal to the argument
 -- or the name of any of its inherited Stereotypes is equal to the argument
 self.allStereotypes->exists(aStereotype : Stereotype |

ad/2001-02-19 Part IIIa

IIIa-112 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

 aStereotype.name = theStereotypeName)

6.2.2 Protocol «profile» Package

6.2.2.1 «Protocol»
context Protocol
 def:
 -- the ProtocolRoles in a Protocol
 let defProtocolRolesStrict : Set(ProtocolRole) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Class) and aModelElement.isStereoTyped("ProtocolRole"))

 -- the ProtocolRoles or their specializations, in a Protocol
 let defProtocolRoles : Set(ProtocolRole) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Class) and aModelElement.isStereoKinded("ProtocolRole"))
 def:
 -- the set of all immediate parent Protocols
 let defAllImmediateParentProtocols : Set (Protocol) =
 generalization.parent.oclAsType(ProtocolRole)

 def:
 -- the set of all immediate child Protocols
 let defAllImmediateChildProtocols : Set (Protocol) =
 specialization.child.oclAsType(Protocol)

 def:
 -- the Association in the Protocol, to support an optional ProtocolCollaboration
 let defAssociation : Association =
 ownedElement->any(aOE : ModelElement | aOE.isOclType(Association))
 .oclAsType(Association)

6.2.2.2 «ProtocolRole»
context ProtocolRole
 def:
 -- the Protocol of a ProtocolRole
 let defProtocol : Protocol = namespace.oclAsType(Protocol)

 def:
 -- the ProtocolMessages of a ProtocolRole
 let defProtocolMessages : Set(ProtocolMessage) =
 feature->select(aFeature : Foundation::Core::Feature |
 aFeature.isOCLType(Reception) and aFeature.isStereoTyped("ProtocolMessage"))

 def:
 -- all the ProtocolMessages of a ProtocolRole, included inherited ones
 let defAllProtocolMessages : Set(ProtocolMessage) =
 allFeatures->select(aFeature : Foundation::Core::Feature |

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-113

 aFeature.isOCLType(Reception) and aFeature.isStereoTyped("ProtocolMessage"))

 def:

 -- the sole ProtocolMessage of a ProtocolRole

 let defSoleProtocolMessage : ProtocolMessage = defAllProtocolMessages ->any(true)

 def:
 -- the conjugate ProtocolRole : the "other" ProtocolRole of its Protocol
 let defConjugateProtocolRole : ProtocolRole =
 defProtocol.defProtocolRoles->any(otherPR : ProtocolRole | not (otherPR = self))

 def:
 -- the Signals of all the ProtocolMessages of the ProtocolRole
 let defAllSignals : Set (Signal) =
 defAllProtocolMessages->collect(aPM : ProtocolMessage | aPM.signal)

 def:
 -- the set of all immediate parent ProtocolRoles
 let defAllImmediateParentProtocolRoles : Set (ProtocolRole) =
 generalization.parent.oclAsType(ProtocolRole)

 def:
 -- the set of all immediate child ProtocolRoles
 let defAllImmediateChildProtocolRoles : Set (ProtocolRole) =
 specialization.child.oclAsType(ProtocolRole)

6.2.2.3 «ProtocolMessage»
context ProtocolRole
 def:
 -- the ProtocolRole of a ProtocolMessage
 let defProtocolRole : ProtocolRole = owner.oclAsType(ProtocolRole)

 def:
 -- the sole/one of the raisedSignal of a ProtocolMessage
 let defSoleRaisedSignal : Signal = raisedSignal->any(true)

 def:
 -- the MessagePayload of the signal of a ProtocolMessage
 let defMessagePayload : MessagePayload =
 signal.feature->any(aF : Feature | aF.isStereoTyped("MessagePayload"))

6.2.2.4 «ProtocolPort»
context ProtocolPort
 def:
 -- the ProcessComponent of a ProtocolPort
 let defProcessComponent : ProcessComponent = namespace.oclAsType(ProcessComponent)

ad/2001-02-19 Part IIIa

IIIa-114 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

 -- the ProtocolRoleRealizations of a ProtocolPort
 let defProtocolRoleRealizations : Set(ProtocolRoleRealization) =
 generalization->collect(aG | Generalization |
 aG.oclAsType(ProtocolRoleRealization))

 -- the ProtocolRoles realized by a ProtocolPort
 let defProtocolRoles : Set(ProtocolRoleRealization) =
 defProtocolRoleRealizations->collect(aPRR | ProtocolRoleRealization |
 aPRR.oclAsType(ProtocolRole))

6.2.3 ComponentSpecification «profile» Package

6.2.3.1 «ProcessComponent»
context ProcessComponent
 def:
 -- the ProtocolPorts in a ProcessComponent
 let defProtocolPortsStrict : Set(ProtocolPort) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Class) and aModelElement.isStereoTyped("ProtocolPort"))

 -- the ProtocolPorts or their specializations, in a ProcessComponent
 let defProtocolPorts : Set(ProtocolRole) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Class) and aModelElement.isStereoKinded("ProtocolPort"))

 -- the PropertyHolders in a ProcessComponent
 let defPropertyHolders : Set(PropertyHolder) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Class) and
 aModelElement.isStereotinded("PropertyHolder"))

 -- the PropertyDefinitions in a ProcessComponent
 let defPropertyDefinitions: Set(PropertyDefinition) =
 defPropertyHolders.defPropertyDefinitions

6.2.3.2 «Property»
context Property
 def: -- the PropertyHolder of the Property
 let defPropertyHolder : PropertyHolder = owner.oclAsType(PropertyHolder)

6.2.3.3 «PropertyHolder»
context PropertyHolder
 def:
 -- the ProcessComponent of a PropertyHolder
 let defProcessComponent : ProcessComponent = namespace.oclAsType(ProcessComponent)

 -- the PropertyDefinitions of a PropertyHolder
 let defPropertyDefinitions : Set(PropertyDefinition) =

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-115

 feature->collect(aF : Foundation::Core::Feature |
 aF.oclAsType(PropertyDefinition))

6.2.4 Composition «profile» Package

6.2.4.1 «Composition»
context Composition
 def:
 -- the ProcessComponents in a Composition
 let defComponentUsage : Set(ProcessComponent) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Model Management::Subsystem) and
 aModelElement.isStereoTyped("ProcessComponent"))

 -- the PortProxy in a Composition
 let defPortProxy : Set(PortProxy) =
 ownedElement->select(aModelElement : Foundation::Core::ModelElement |
 aModelElement.isOCLType(Foundation::Core::Class) and
 aModelElement.isStereoTyped("PortProxy"))

ad/2001-02-19 Part IIIa

IIIa-116 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

7. Samples

In the sample figures below, various graphical artifacts of the notation, have been
annotated with an arrow line, and the name of the virtual metamodel element, or
Stereotype, that they represented.

Line and annotation are rendered in blue, when seen in a colour media, or a shade of grey,
when media is monochromatic.

These lines and annotations are not part of the proposed notation, but rather just intended
help for the understanding of the examples.

7.1 CCA Notation

7.1.1 DocumentModel examples

7.1.1.1 CompositeData definitions

familyNumber: Integer
productNumber: Integer

PartCode
CompositeDataAttribute, typed as

DataType

customerName: String
date: Date
time: Time
+part: PartCode
 familyNumber: Integer
 productNumber: Integer
quantity: Integer

QuoteRequest
CompositeDataAttribute, typed as

DataType

Attribute, typed as
CompositeData

customerName: String
date: Date
time: Time
+part: PartCode
 familyNumber: Integer
 productNumber: Integer
quantity: Integer
unitPrice: Float
totaPrice: Float

Quote
CompositeDataAttribute, typed as

DataType

Attribute, typed as
CompositeData

Figure 27 Sample CompositeData definition (CCA)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-117

In this example, a CompositeData named PartCode is defined with two slots of information
Attribute, 'familyNumber' and 'productNumber', both type with the Integer DataType.

Another two CompositeData named QuoteRequest and Quote are defined, including
Attribute of String, Date, Time and Float DataType, and an Attribute typed as the
PartCode CompositeData specified above.

These CompositeData are used in the specification of the ProtocolMessage in the QuoteBT
RequestReplyProtocol, below.

7.1.2 Protocol examples

7.1.2.1 Choreographed Protocol

CCA notation for Choreographed Protocols is the same as the UML notation for Activity
Graphs – Activity Diagrams, including elements of the notation for State Machines – State
Charts. Please, see Protocol examples in the UML Notation section of Examples, below.

A slight difference allowed in CCA is that, to reduce the space used to depict sequences of
Sending and Receiving Signals, the sending symbol and the receiving symbols for the
response, are positioned one immediately under the other, effectively touching the symbol
above. Conversely, the receiving signal symbol, and the send signal symbols for the
possible alternative responses, are positioned one under the other, touching.

sell_role_Orderbuy_role_Order

Order

OrderConfirmation

OrderDenied

Protocol OrderBT

Success

Failure

ProtocolRole
(initiator) ProtocolRole

Protocol

Start

ProtocolMessages

TerminateSuccess

TerminateFailure

Sending
ProtocolMessage

Receiving
ProtocolMessage

Sending ProtocolMessages

Figure 28: Sample Choreographed Protocol (CCA)

This sample of Protocol using the notation for Activity Diagram, specifies, two
ProtocolRoles, buy_role_Order and sell_role_Order, each in its own Partition (swim lane)
of the Activity Diagram.

The role buy_role_Order is the initiator, what is shown in its Partition containing the Start
initial State.

Roles exchange the ProtocolMessages Order, OrderConfirmation and OrderDenied, with
the CompositeData of same name. Sending and receiving of the ProtocolMessage is
represented by the UML Symbol for Transitions, Sending and Receiving Signals. A
Sending Symbol in one Partition corresponds to the sending of a ProtocolMessage by the

ad/2001-02-19 Part IIIa

IIIa-118 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

ProtocolRole of the Partition. The Sending (Receiving) Symbol is connected to a Class
figure, without compartments, and the name of the CompositeData (or DataType in other
examples) carried as attribute of the Signal being sent. The Class figure located in between
the Partitions and connected to a Receiving (Sending) Symbol in the opposite Partition.

The sequencing of the ProtocolMessage is shown by the consecutive "touching" layout of
the Sending and Receiving Symbols. The two consecutive Sending (Receiving) Symbols
represent alternative candidate responses for the ProtocolMessage of the Receiving
(Sending) Symbol immediately above. In more standard UML notation for Activity
Diagrams, the Sending and Receiving Symbols would be located without touching, and
connected by two transition arrows showing two alternate paths of the execution.

Final States, stereotyped as TerminateSuccess or TerminateFailure, are located in the
Partition of the initiator ProtocolRole, and represent the alternative candidate outcomes of
the Protocol activity.

buy_role_Quote sell_role_Quote

QuoteRequest

Quote

Protocol QuoteBT

Start

RequestReplyProtocol

ProtocolRole
(initiator)

TerminateSuccess

ProtocolRole

TeminateSuccess

Sending
ProtocolMessage

Receiving
ProtocolMessage

ProtocolMessages

Figure 29: Sample Choreographed RequestReplyProtocol (CCA)

This example of RequestReplyProtocol uses same representation as the Protocol above,
with the noticeable difference that there is only one Sending (Receiving) Symbol after the
Receiving (Sending) one. Indeed, a RequestReplyProtocol is a case of protocol, constrained
specifically to represent this kind of simpler interactions.

sell_role_Shippingbuy_role_Shipping

ShippingNotice

Protocol ShippingNoticeBT
FlowProtocol

Success

Start

TerminateSuccess

Sending
ProtocolMessage

Receiving
ProtocolMessage

ProtocolMessage

ProtocolRole
(initiator)ProtocolRole

Figure 30: Sample Choreographed FlowProtocol (CCA)

This example of FlowProtocol uses same representation as the Protocol and
RequestReplyProtocol above, with the noticeable difference that there is only one Sending
and one Receiving Symbol, one in each Partition. According to its constraints, a
FlowProtocol is the simpler of the interactions.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-119

sell_role_Paymentbuy_role_Payment

Protocol PaymentNoticeBT

PaymentNotice

FlowProtocol

Start

TerminateSuccess

Sending
ProtocolMessage

Receiving
ProtocolMessage

ProtocolMessage

ProtocolRole
(initiator) ProtocolRole

Figure 31: Sample Choreographed FlowProtocol (CCA)

7.1.2.2 Protocol with SubProtocols

CCA notation for Choreographed Protocols is the same as the UML notation for Activity
Graphs – Activity Diagrams – , and State Machines – State Charts. SubProtocols are
represented by ActionStates with the name of the activated SubProtocol.

sell_Sales_rolebuy_Sales_role

buy_role_Order : OrderBT

sell_role_Shipping: ShippingNoticeBT

buy_role_Payment: PaymentNoticeBT

[OrderDenied] [OrderConfirmation]

Protocol Sales_protocol

Success

Failure

buy_role_Quote: QuoteBT sell_role_Quote: QuoteBT

sell_role_Order : OrderBT

buy_role_Shipping: ShippingNoticeBT

sell_role_Payment: PaymentNoticeBT

ProtocolRole
(initiator) ProtocolRole

Protocol
(with subProtocols)

Start

TerminateSuccess

TerminateFailure

SubProtocolRole
(initiator)

SubProtocolRole

ProtocolTransitions with guard

SubProtocolRole
(initiator)

Figure 32: Sample Choreographed Protocol with subProtocols (CCA)

In this example of Protocol with sub-Protocols, the overall activity of the Sales_protocol is
specified re-using the more elementary Protocols QuoteBT, OrderBT, ShippingNoticeBT
and PaymentNoticeBT.

For each sub-Protocol, two ActionState are inserted, one in Partition of each ProtocolRole,
corresponding to each of the ProtocolRole of the sub-Protocol. In the example, the
OrderBT Protocol is used as sub-Protocol of the Sales_protocol. For each of the
ProtocolRoles in OrderBT, an ActionState is inserted : buy_role_Order in the Partition of
buy_Sales_role, and sell_role_Order in the Partition of sell_Sales_role. The represented

ad/2001-02-19 Part IIIa

IIIa-120 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

semantics are that buy_Sales_role will play the (sub) role of buy_role_Order, when
executing activity according to the OrderBT Protocol, conversely, the sell_Sales_role will
play the (sub) role of sell_role_Order.

The ActionStates corresponding to a sub-Protocol are connected by a Transition arrow,
representing the sequencing dependency between the activity of the initiator ProtocolRole
of the sub-Protocol, and the reactive activity of the other ProtocolRole of the sub-Protocol.

Note the Transition arrow from the ActionState for sell_role_Order, in the Partition for the
ProtocolRole sell_Sales_role, is connected to the ActionState for sell_role_Shipping, and
guarded with the expression [OrderConfirmation]. The represented semantics are that : IF
under the activity of sell_role_Order, a ProtocolMessage with an OrderConfirmation flows,
THEN the overall activity will proceed with the activity of sell_role_Shipping.

Similarly, a Transition guarded with [OrderDenied] outgoing from buy_role_Order,
connects to the TerminateFailure FinalState. The represented semantics is that: IF under
the activity of buy_role_Order, a ProtocolMessage with OrderDenied flows, THEN the
overall activity will terminate with a failure.

7.1.3 ComponentSpecification examples

7.1.3.1 ProcessComponents

Buyer

buy :
Sales_protocol ::
buy_Sales_role

t

ProtocolPort
(for initiator role)

ProcessComponent

Seller

sell :
Sales_protocol ::
sell_Sales_role

t

ProcessComponent

ProtocolPort

ProtocolPort

OffshoreSeller :: Seller

sell :
Sales_protocol ::
buy_Sales_role

t

ProcessComponent (subtype)

Figure 33: Sample ProcessComponents (CCA)

In this example of ProcessComponent specification, a Buyer ProcessComponent is
specified, as having a single buy ProtocolPort, that realizes the initiator ProtocolRole of the
Sales_protocol.

The Seller ProcessComponent is specified with the single sell ProtocolPort realizing the
non-initiator ProtocolRole of the Sales_protocol.

An specialization of Seller, the OffshoreSeller ProcessComponent is introduced here, and
will be referenced in the ContextualBinding example.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-121

Note that no specification is provided about how the ProcessComponent actually perform
the activities of the Protocols realized by their ProtocolPorts.

Seller_Order

sell_Order_port :
OrderBT::
sell_role_Order

t Seller_Quote

sell_Quote_port :
QuoteBT::
sell_role_Quote

t

Seller_ShippingNotice

sell_ShippingNotice_port :
ShippingNoticeBT::
sell_role_Shipping

t Seller_PaymentNotice

sell_PaymentNotice_port :
PaymentNoticeBT::
sell_role_Payment

t

ProcessComponentProcessComponent

ProcessComponent ProcessComponent

ProtocolPort

ProtocolPort

ProtocolPort ProtocolPort
(for initiator role)

Figure 34: Sample ProcessComponents (CCA) - will be used in the ComposedComponent example

These sample ProcessComponent, Seller_Order, Seller_Quote, Seller_ShippingNotive,
Seller_PaymentNotice are specified in a way similar to the examples above. They are
defined here for consistency, and will be used in the sample for ComposedComponent.

7.1.4 Composition examples

7.1.4.1 Composition (as a CommunityProcess)

Market

Buyer_usage : Buyer t Seller_usage : Seller t

CommunityProcess

ComponentUsage ComponentUsage

Port UsagePort Usage

Connection

buy : Buyer :: buy sell : Seller :: sell

Figure 35: Sample Composition as a CommunityProcess. (CCA)

As an example of Composition, a CommunityProcess is specified, leaving for a later
specific example, the case of a Composition in a ComposedComponent.

In the Market CommunityProcess, two ProcessComponent, Buyer and Seller, are used, and
incorporated in the Composition as Buyer_usage and Seller_usage, respectively.

ad/2001-02-19 Part IIIa

IIIa-122 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

The ProtocolPort of the used ProcessComponent are incorporated as PortUsage, in their
respective ComponentUsage. Therefore, the Buyer_usage contains a buy PortUsage,
corresponding to the buy ProtocolPort of the Buyer ProcessComponent. Similarly, the
Seller_usage contains the sell PortUsage corresponding to the sell ProtocolPort of Seller
ProcessComponent.

The buy and sell PortUsage are compatible because each is a use of a ProtocolPort
realizing complementary ProtocolRole of the same Protocol. Therefore, the
ProtocolMessage that can be sent from a PortUsage can be received from the other, and
vice versa. Thus it is possible to establish a Connection between the two PortUsage, as
rendered in the diagram.

7.1.4.2 ContextualBinding in Community Process

OffshoreMarket : Market

CommunityProcess
(refined)

Seller_usage = OffshoreSeller
ContextualBinding

bindsTofills

Figure 36: ContextualBinding (in CommunityProcess) (CCA)

In this example for ContextualBinding, a specialization OffshoreMarket, of the Market
CommunityProcess above, is specified along with a ContextualBinding.

The OffshoreMarket specifies as its supertype, the previously specified CommunityProcess
Market. The refinement introduced by OffshoreMarket is specified by the
ContextualBinding.

The ContextualBinding is represented in a separate compartment of the OffshoreMarket
CommunityProcess.

Within the OffshoreMarket CommunityProcess, the OffshoreSeller ProcessComponent will
fill the Seller_usage, in the Market CommunityProcess, and will be used rather than the
one originally used in the Market CommunityProcess.

7.1.5 ComponentRealization examples

7.1.5.1 ComposedComponent

Please be advised that in this example, the CCA notation has been abused, to provide to
the reader, directly in the diagram, information that will allow to better trace the elements
in the diagram, to elements in other related example diagrams, and the elements in the
Conceptual Meta-Model. The notational abuses are :

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-123

? ? The name of the ComposedComponent is followed by the name of its supertype
Component, as in :

"Seller_composed : Seller"

? ? The name of the ProtocolPort is followed by the name of the ProtocolRole that it
realizes, fully qualified with the name of the Protocol (usually the name of the
ProtocolPort is rendered alone), as in :

"sell : Sales_protocol::sell_Sales_role"

? ? The name of each ComponentUsage is followed by the name of the Component
that is being used (usually the name of the ComponentUsage is rendered alone),
as in :

"Seller_Quote_usage : Seller_Quote"

"Seller_Order_usage : Seller_Order"

"Seller_ShippingNotice_usage : Seller_ShippingNotice "

"Seller_PaymentNotice_usage : Seller_PaymentNotice "

? ? The name of each PortUsage is followed by the name of the Port that is being
used, fully qualified with the name of the Component (usually the name of the
PortUsage is rendered alone), as in :

"sell : Seller_Quote :: sell_Quote_port"

"sell : Seller_Order :: sell_Order_port"

"sell : Seller_ShippingNotice :: sell_ShippingNotice_port"

"sell : Seller_PaymentNotice :: sell_PaymentNotice_port"

? ? The PortProxy is shown as a distinct, separate box, has been named, and is
followed by the name of the ProtocolRole that it realizes, fully qualified with the
name of the Protocol (usually the PortProxy is rendered as a small box contiguous
to that of the represented ProtocolPort, and the name of the PortProxy is left
anonymous and not rendered), as in :

"buy : SalesProtocol :: buy_Sales_role"

? ? The elements that pertain to the internal Composition of the
ComposedComponent, has been framed in a box with dotter line border (usually
the boundary of the Composition is not rendered).

ad/2001-02-19 Part IIIa

IIIa-124 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Seller_composed :: Seller

Seller_ShippingNotice_usage ::
Seller_ShippingNotice

sell : Seller_ShippingNotice.
sell_ShippingNotice_port

t

Seller_PaymentNotice_usage ::
Seller_PaymentNotice

sell : Seller_PaymentNotice.
sell_PaymentNotice_port

t

Seller_Quote_usage ::
Seller_Quote

sell : Seller_Quote.
sell_Quote_port

t

Seller_Order_usage ::
Seller_Order

sell : Seller_Order.
sell_Order_port

t

protocolScope:
QuoteBT

protocolScope:
OrderBT

protocolScope:
ShippingNoticeBT

protocolScope:
PaymentNoticeBT

ComposedComponent

ProtocolPort ComponentUsage

ComponentUsage

ComponentUsage

ComponentUsage

PortUsage

PortUsage

PortUsage

PortUsage

buy :
Sales_protocol ::
buy_Sales_role

Connection
(with protocolScope)

Connection
(from ProtocolPort to PortProxy)

PortProxy

internal Composition of the
ComposedComponent

sell :
Sales_protocol ::
sell_Sales_role

Figure 37: ComposedComponent (CCA)

In this example, the Seller_composed is a ComposedComponent, specified as a subtype of
the Seller ProcessComponent previously defined in an example above. Therefore, the
Seller_composed is substitutable with Seller, and actually provides a specification of how
will be carried out the activities corresponding to the Protocol realized by the ProtocolPort.

Seller_composed has an internal Composition, although it is not separately depicted in the
notation, other than by having the model elements of the Composition located inside the
box figure of the ComposedComponent.

The Seller_composed ComposedComponent has inside (its Composition), a number of
ComponentUsage : Seller_Quote_usage, Seller_Order_usage,
Seller_ShippingNotice_usage, Seller_PaymentNotice_usage, each corresponding to uses of
the predefined ProcessComponent : Seller_Quote, Seller_Order, Seller_ShippingNotice,
Seller_PaymentNotice. Each ComponentUsage has PortUsage corresponding to the
ProtocolPort of their used ProcessComponent.

The sell ProtocolPort of the Seller_composed ComposedComponent provides a pass-
through (or Relay port, un UML-RT terms), such that the internal ComponentUsage can
communicate with the outside of the Seller_composed.

The Composition of the Seller_composed has a PortProxy that represents, within the
Composition, the ProtocolPort that may eventually be externally connected to the sell
ProtocolPort of the Seller_composed. The PortProxy is named 'buy', and in fact realizes the

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-125

ProtocolRole buy_Sales_role, conjugated in the Sales_protocol, to the ProtocolRole
sell_Sales_role, realized by the sell ProtocolPort of Seller_composed.

As the sell ProtocolPort, and the buy PortProxy, realize each one of the ProtocolRole of the
same Protocol Sales_protocol, it is possible to establish a Connection between the sell
ProtocolPort and the buy PortProxy. This is depicted in the example diagram, with the
usual UML line for associations.

In this example, the designer has chosen a pattern, where the activities for each of the sub-
Protocol, realized by the sell ProtocolPort, is delegated to one internal ComposedUsage. To
accomplish this delegation, the buy PortProxy is linked through a Connection, to the sell
PortUsage of each of the ComponentUsage.

To ensure that only the ProtocolMessage, corresponding to the sub-Protocol supported by
the each of the PortUsage, is delegated through the Connection, each Connection is fine-
tuned with the protocolScope taggedValue. The taggedValue is set with the name of the
sub-Protocol whose ProtocolMessage are allowed to flow through the Connection.

7.1.6 Choreography examples

7.1.6.1 Choreography of a Protocol

Choreography of Protocols have already been shown in the examples for Protocol, above.
Protocols have been shown in their Choreographed notation, as Activity Diagrams.

See Figure 31: Sample Choreographed FlowProtocol (CCA) in page 119, and Figure 32:
Sample Choreographed Protocol with subProtocols (CCA) in page 119.

7.1.6.2 Choreography of a ProcessComponent

The previous examples of ProcessComponent have a single ProtocolPort, and the example
of Choreography would not be quite illustrative. As the subject for the example of
Choreography in a ProcessComponent, a new ProcessComponent is specified, with a
number of ProtocolPort.

ad/2001-02-19 Part IIIa

IIIa-126 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Seller_delegator :: Seller
ProcessComponent

ProtocolPort

ProtocolPort

sell :
Sales_protocol ::
sell_Sales_role

buy_Quote_port
: QuoteBT::
buy_role_Quote

buy_Order_port :
OrderBT::
buy_role_Order

buy_ShippingNotice_port
: ShippingNoticeBT::
buy_role_Shipping

buy_PaymentNotice_port :
PaymentNoticeBT::
buy_role_Payment

ProtocolPort
(for initiator roles)

Figure 38: ProcessComponent for example on Choreography of ProcessComponent (CCA)

In this ProcessComponent, the designer has chosen a pattern, where a ProtocolPort realizes
the sell_Sales_role of the Sales_protocol, and a number of ProtocolPort realize the buyer-
side ProtocolRole, of each of the sub-Protocol of the Sales_protocol.

The ProcessComponent will delegate into external ProcessComponent, the activities
corresponding to each of the sub-Protocol.

buy_role_Shipping:
ShippingNoticeBT

[OrderDenied]

[OrderConfirmation]

ProcessComponent Seller_delegator

Success

Failure

buy_role_Quote:
QuoteBT

buy_role_Order :
OrderBT

buy_role_Payment:
PaymentNoticeBT

QuoteRequest

Order

OrderConfirmation

OrderDenied

ShippingNotice

PaymentNotice

buy_PaymentNotice
_port

buy_ShippingNotice
_port

buy_Order_portsell buy_Quote_port

Figure 39: Choreography of ProcessComponent – with sub-Protocols (CCA)

The Choreography of the Seller_delegator ProcessComponent, expressed as an
ActivityGraph, specifies the order in which ProtocolMessages will be received and sent,

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-127

and when will be activated the Protocol, on ProtocolPort named as "buy_Xxx_port" (with
"Xxx" being "Quote", "Order", "ShippingNotice" and "PaymentNotice)..

ProcessComponent Seller_delegator

Success

Failure

QuoteRequest

Order

OrderConfirmation

OrderDenied

ShippingNotice

PaymentNotice

buy_PaymentNotice
_port

buy_ShippingNotice
_port

buy_Order_portsell buy_Quote_port

QuoteRequest

QuoteQuote

Order

OrderDenied

OrderConfirmation

ShippingNotice

PaymentNotice

Figure 40: Choreography of ProcessComponent (CCA)

In this expanded ActivityGraph rendering of the Choreography of the Seller_delegator
ProcessComponent, the Protocols on the buy_xxx ProtocolPort have been exploded n their
individual ProtocolMessage, allowing a more direct perception of the sequences of
ProtocolMessages that will be received and sent through each ProtocolPort.

7.1.7 High level ActivityGraph of a Composition

A UML ActivityGraph can be used to provide an alternate representation of the
Composition.

The Composition subject of this sample High Level Activity Graph, is the internal
Composition of the ComposedComponent described in Figure 37: ComposedComponent
(CCA) in page 124.

ad/2001-02-19 Part IIIa

IIIa-128 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

ShippingNotice_sell

Success

Failure

Quote_sell

Order_sell
[OrderCancelled]

[OrderConfirmation]

PaymentNotice_sell

Sales_buy

Order_buy

ShippingNotice_buy

PaymentNotice_buy

Quote_buy

Seller_Order_
usage

Seller_Q uote_
usage

buy Seller_ShippingNotice
_usage

Seller_PaymentNotice
_usage

Figure 41: High Level ActivityGraph of Composition (CCA)

In this expanded ActivityGraph rendering of the Choreography of the Seller_delegator, a
Partition (swim-lane) has been created for

7.2 UML Notation

7.2.1 DocumentModel examples

7.2.1.1 CompositeData definitions

Standard UML Class diagrams are used to represent the structure of ProtocolMessage
information payload. Attributes are rendered in their usual compartment. Note that slots of
CompositeData within a container CompositeData Class, is done as Attributes, and not
through Associations.

Quote
<<CompositeData>>

customerName : String
date : Date
time : Time
part : PartCode
quantity : Integer
unitPrice : Float
totalPrice : Float

PartCode
familyNumber : Integer
productNumber : Integer

<<CompositeData>>
QuoteRequest

<<CompositeData>>

customerName : String
date : Date
time : Time
part : PartCode
quantity : Integer

Figure 42: Sample CompositeData definition (UML)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-129

7.2.2 Protocol examples

7.2.2.1 Protocol,RequestReplyProtocol, FlowProtocol

Protocol, ProtocolRole and ProtocolMessage can be rendered in UML both as Class
diagrams – a purely structural representation – and as ActivityGraphs, where their
Choreography is also represented.

The UML representation of Protocol, ProtocolRole and ProtocolMessage, as Class
diagram, is done according to the standard UML notation of the baseClass of their defined
Stereotypes.

Note that some tools do not fully support a notation for Reception BehavioralFeature. To
overcome this limitation, the compartment and specification for Operation
BehavioralFeature is used instead. The ProtocolMessage becomes an Operation, with the
name of the Operation corresponding to the name of the ProtocolMessage. An argument of
the Operation (in this case with the chose name of 'payload'), serves to capture a reference
to the CompositeData attribute of the Reception's Signal.

OrderBT
(from Sample091)

<<Protocol>>

sell_role_Order
initiator = FALSE

<<ProtocolMessage>> orderMsg(payload : Order)

<<ProtocolRole>>
buy_role_Order

initiator = TRUE

<<ProtocolMessage>> orderConfirmationMsg(payload : OrderConfirmation)
<<ProtocolMessage>> orderDeniedMsg(payload : OrderDenied)

<<ProtocolRole>>

Figure 43: Sample Protocol (UML)

QuoteBT
(from Sample091)

<<RequestReplyProtocol>>

buy_role_Quote
initiator = TRUE

<<ProtocolMessage>> quoteMsg(payload : Quote)

<<ProtocolRole>>
sell_role_Quote

initiator = FALSE

<<ProtocolMessage>> quoteRequestMsg(payload : QuoteRequest)

<<ProtocolRole>>

Figure 44: SampleRequestReplyProtocol (UML)

ad/2001-02-19 Part IIIa

IIIa-130 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

ShippingNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Shipping
initiator = FALSE

<<ProtocolMessage>> shippingNoticeMsg()

<<ProtocolRole>>
sell_role_Shipping

initiator = TRUE

<<ProtocolRole>>

PaymentNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Payment
initiator = TRUE

<<ProtocolRole>>
sell_role_Payment

initiator = FALSE

<<ProtocolMessage>> paymentNoticeMsg(payload : PaymentNotice)

<<ProtocolRole>>

Figure 45: Sample FlowProtocol (UML)

The UML rendering of a Choreographed Protocol is an ActivityGraph. The CCA
representation is very similar, with just a small space saving variation. Please see
Figure 28: Sample Choreographed Protocol (CCA) in page 117, and immediately
following RequestReplyProtocol and FlowProtocol examples.

Start

Sending
ProtocolMessage

sell_role_Orderbuy_role_Order

Order

OrderConfirmation

OrderDenied

Protocol OrderBT

Success

Failure

Receiving
ProtocolMessage

Protocol

ProtocolRole
(initiator)

ProtocolMessages

TerminateSuccess

TerminateFailure

ProtocolRole

Figure 46: Sample Choreographed Protocol (UML)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-131

sell_role_Quotebuy_role_Quote

QuoteRequest

Quote

Protocol QuoteBT

Figure 47: Sample Choreographed RequestReplyProtocol (UML)

sell_role_Shippingbuy_role_Shipping

ShippingNotice

Protocol ShippingNoticeBT

sell_role_Paymentbuy_role_Payment

Protocol PaymentNoticeBT

PaymentNotice

Figure 48: Sample Choreographed FlowProtocol (UML)

ad/2001-02-19 Part IIIa

IIIa-132 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

 : buy_role_Order : sell_role_Order
1: orderMsg(Order)

2: orderConfirmationMsg(OrderConfirmation)

3: orderDeniedMsg(OrderDenied)

 : buy_role_Quote : sell_role_Quote

1: quoteRequestMsg(QuoteRequest)

2: quoteMsg(Quote)

1: shippingNoticeMsg(ShippingNotice)

 :
buy_ role_Shipping

 :
sell_role_Shipping

 :
sell_role_Payment

 : buy_role_Payment

1: paymentNoticeMsg(PaymentNotice)

Figure 49: Sample Protocol, RequestReplyProtocol, FlowProtocol (UML Collaboration view)

See above a sample rendering of Protocol as Collaboration diagrams (classifier level). The
Protocol must be already specified in its structural, and optionally the Choreography
ActivityGraph form.

 Note that no additional information is added to the specification of the Protocol, and that
some partial ordering of ProtocolMessage, that can be expressed by the Choreography
ActivityGraph, can not be expressed completely by the mechanisms available in UML
Collaborations.

7.2.2.2 Protocol with SubProtocols

See below a rendering of the Protocol Sales_protocol, with sub-Protocol. Aggregation
notation is used to represent the nesting of SubProtocolRole, within the ProtocolRole of the
top-level Protocol.

The inheritance of the SubProtocolRole, from the ProtocolRole of the sub-Protocol, is made
explicit in the diagram below.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-133

Sales_protocol
(from Sample091)

<<Protocol>>

PaymentNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Payment
<<ProtocolRole>>

sell_role_Payment
<<ProtocolRole>>

OrderBT
(from Sample091)

<<Protocol>>

sell_role_Order
<<ProtocolRole>>

buy_role_Order
<<ProtocolRole>>

QuoteBT
(from Sample091)

<<RequestReplyProtocol>>

buy_role_Quote
<<ProtocolRole>>

sell_role_Quote
<<ProtocolRole>>

ShippingNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Shipping
<<ProtocolRole>>

sell_role_Shipping
<<ProtocolRole>>

sell _subrole_Payment
<<SubProtocolRole>>

sell_subrol e_Shipping
<<SubProtocolRole>>

sell_subrole_Order
<<SubProtocolRole>>

sell_subrole_Quote
<<SubProtocolRole>>

sell_Sales_role
<<ProtocolRole>>

buy_subrole_Payment
<<SubProtocolRole>>

buy_subrole_Shipping
<<SubProtocolRole>>

buy_subrole_Order
<<SubProtocolRole>>

buy_subrole_Quote
<<SubProtocolRole>>

buy_Sales_role
<<ProtocolRole>>

<<access>>

<<access>>

<<access>>

<<access>>

Figure 50: Sample Protocol with SubProtocols (UML)

The UML rendering of a Choreographed Protocol with sub-Protocol is an ActivityGraph,
with ActionState representing the activation of sub-Protocol. Its representation in CCA is
identical to the standard UML ActivityGraph. Please see Figure 32: Sample
Choreographed Protocol with subProtocols (CCA) in page 119.

ad/2001-02-19 Part IIIa

IIIa-134 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

A Protocol with sub-Protocol may be rendered in an ActivityGraph representation where
the flow of ProtocolMessage in the sub-Protocol are exploded and made explicit in the top
level Protocol. While this is not an encouraged practice, it may be sometimes useful, for a
more immediate perception of the overall ProtocolMessage involved. Following is a sample
of such an exploded view of sub-Protocol.

sell_Sales_rolebuy_Sales_role

Order

OrderConfirmation

OrderDenied

Success

Failure

ShippingNotice

PaymentNotice

Protocol Sales_protocol

QuoteRequest

Quote

Figure 51: Sample Choreographed Protocol with exploded SubProtocols (CCA)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-135

 :
buy_Sales_role

 :
sell_Sales_role

1: orderMsg(Order)

2: orderConfirmationMsg(OrderConfirmation)
3: shippingNoticeMsg(ShippingNotice)

4: paymentNoticeMsg(PaymentNotice)

Figure 52: Sample Protocol with SubProtocols (UML Collaboration view)

7.2.3 ComponentSpecification examples

7.2.3.1 ProcessComponents

ProcessComponent specifications can be rendered using conventional UML Class
diagrams. Stereotyped Port Classes are shown within the frame of their container
Stereotyped ProcessComponent Subsystem.

In the sample diagram below, the ProtocolRole realized by the Port is shown, and the
realization relationship made explicit with the standard Generalization notation.

Sales_protocol
<<Protocol>>

Buyer
<<ProcessComponent>>

buy
(from Buyer)

<<ProtocolPort>>

buy_Sales_role
<<ProtocolRole>>

sell_Sales_role
<<ProtocolRole>>

Seller
<<ProcessComponent>>

sell
(from Seller)

<<ProtocolPort>>

<<access>><<access>>

Figure 53: Sample ProcessComponents, with PropertyDefinitions, and ProtocolPorts (UML)

ad/2001-02-19 Part IIIa

IIIa-136 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Seller_Quote
(from Sample091)

<<ProcessComponent>>

sell_Quote_port
<<ProtocolPort>>

QuoteBT
(from Sample091)

<<RequestReplyProtocol>>

buy_role_Quote
<<ProtocolRole>>

sell_role_Quote
<<ProtocolRole>>

<<access>>

buy_role_Order
<<ProtocolRole>>

Seller_Order
(from Sample091)

<<ProcessComponent>>

sell_Order_port
<<ProtocolPort>>

OrderBT
(from Sample091)

<<Protocol>>

sell_role_Order
<<ProtocolRole>>

<<access>>

Seller_ShippingNotice
(from Sample091)

<<ProcessComponent>>

sell_ShippingNotice_port
<<ProtocolPort>>

ShippingNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Shipping
<<ProtocolRole>>

sell_role_Shipping
<<ProtocolRole>>

<<access>>

Seller_PaymentNotice
(from Sample091)

<<ProcessComponent>>

sell_PaymentNotice_port
<<ProtocolPort>>

PaymentNoticeBT
(from Sample091)

<<FlowProtocol>>

buy_role_Payment
<<ProtocolRole>>

sell_role_Payment
<<ProtocolRole>>

<<access>>

Figure 54: Some components for the ComposedComponent example (UML)

7.2.4 Composition examples

7.2.4.1 Composition (as a CommunityProcess)

Composition specifications, as the CommunityProcess below, can be rendered using
conventional UML Class diagrams. Stereotyped PortUsage Classes are shown within the
frame of their container Stereotyped ComponentUsage Subsystem.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-137

In the sample diagram below, the ProcessComponent used by the ComponentUsage, and
the ProtocolPort used by the PortUsage is shown. The use and represents relationship is
made explicit with the standard Generalization notation.

Note that some tools do not support the UML Subsystem as a first-class model element, but
rather require the designer to use instances of Package, instead, and apply a "subsystem"
Sterotype. A side effect of this workaround is that, as Package are not Classifier, some
tools do not allow creation of Generalization relationships between the ProcessComponent
Stereotype of Package (that should be Subsystem), and the ComponentUsage Stereotype of
Package (that should be also Subsystem). In this case, an easy workaround is to use a
Dependency, from the ComponentUsage to the ProcessComponent, and stereotype the
dependency as 'uses'.

Market
(from Sample091)

<<CommunityProcess>>

Seller_usage
<<ComponentUsage>>

Buyer_usage
<<ComponentUsage>>

Buyer
(from Sample091)

<<ProcessComponent>>

buy
(from Buyer)

<<ProtocolPort>>
Seller

(from Sample091)
<<ProcessComponent>>

sell
(from Seller)

<<ProtocolPort>>

buy_usage
<<PortUsage>>

sell_usage
<<PortUsage>>

<<Connection>>

<<access>> <<access>>

Figure 55: Sample Composition as a CommunityProcess (UML)

 : buy_usage :
sell_usage

1: orderMsg(Order) 2: orderConfirmationMsg(OrderConfirmation)

3: shippingNoticeMsg(ShippingNotice)

4: paymentNoticeMsg(PaymentNotice)

Figure 56: Sample Composition as a CommunityProcess, (UML Collaboration view)

7.2.4.2 ContextualBinding on Community Process

Representation of a ContextualBinding in UML uses the same artifacts and notation than
the standard UML Binding.

ad/2001-02-19 Part IIIa

IIIa-138 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Note that some tools have no direct support for the Binding three-way dependency. A
workaround is to use a purely graphical note artifact, locate it within the frame of the
Composition (or its container ComposedComponent) and reference from the note both the
'fills' ComponentUsage, and the 'bindsTo' ProcessComponent.

Market
(from Sample091)

<<CommunityProcess>>

Seller_usage
(from Market)

<<ComponentUsage>>
Buyer_usage
(from Market)

<<ComponentUsage>>

OffshoreSeller
(from Sample091)

<<ProcessComponent>>
OffshoreMarket

(from Sample091)
<<CommunityProcess>>

Contextual
Binding argument

sell_usage
(from Seller_usage)

<<PortUsage>>
buy_usage

(from Buyer_usage)
<<PortUsage>> <<Connection>>

Seller
(from Sample091)

<<ProcessComponent>>

sell
(from Seller)

<<ProtocolPort>>

<<access>>

Figure 57: ContextualBinding on CommunityProcess (UML)

Alternatively, a more compact notation could use such a note as a compartment to textually
express by name, the ContextualBinding of the 'bindsTo' ProcessComponent, to the 'fills'
ComponentUsage. This is similar to the notational approach used by CCA, for
representation of ContextualBinding.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-139

Market
(from Sample091)

<<CommunityProcess>>

OffshoreMarket
(from Sample091)

<<CommunityProcess>>

Contextual Binding
Seller_usage = OffshoreSeller

Figure 58: ContextualBinding on CommunityProcess, compact form (UML)

7.2.5 ComponentRealization examples

See also examples for Composition «profile» Package, section 7.1.4, page 121.

7.2.5.1 ComposedComponent

The UML representation of ComposedComponent in a standard Class diagram is a
combination to the representation of ProcessComponent (see section 7.2.3
"ComponentSpecification examples", in page 135, above) and Composition (see section
7.2.4 "Composition examples" in page 136, above).

An additional PortProxy stereotyped Class is located within the frame of the
ComposedComponent stereotyped Subsystem. A Generalization relationship is explicitly
used in the diagram below, to express the ProtocolRole that the PortProxy realizes.

ad/2001-02-19 Part IIIa

IIIa-140 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

Seller_composed
(from Sample091)

<<ComposedComponent>>

Seller_Quote_usage
<<ComponentUsage>>

Seller_Order_usage
<<ComponentUsage>>

Seller_ShippingNotice_usage
<<ComponentUsage>>

Seller_PaymentNotice_usage
<<ComponentUsage>>

sell_Order_portUsage
<<PortUsage>>

sell_Quote_portUsage
<<PortUsage>>

sell_PaymentNotice_portUsage
e_portUsage

<<PortUsage>>

sell_ShippingNotice_portUsage
_portUsage

<<PortUsage>>

sell
<<ProtocolPort>>

sell_proxy
<<PortProxy>>

<<Connection>>

<<Connection>>

<<Connection>>

<<Connection>>

<<Connection>>

Seller_Order
(from Sample091)

<<ProcessComponent>>

sell_Order_port
<<ProtocolPort>>

Seller_Quote
(from Sample091)

<<ProcessComponent>>

sell_Quote_port
<<ProtocolPort>>

Seller_PaymentNotice
(from Sample091)

<<ProcessComponent>>

sell_PaymentNotice_port
<<ProtocolPort>>

Seller_ShippingNotice
(from Sample091)

<<ProcessComponent>>

sell_ShippingNotice_port
<<ProtocolPort>>

Sales_protocol
(from Sample091)

<<Protocol>>

buy_Sales_role
<<ProtocolRole>>

sell_Sales_role
<<ProtocolRole>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

Figure 59: ComposedComponent (UML)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-141

 : sel l_proxy

 :
sell_Order_portUsage

 :
sell_ShippingNotice_portUsage

 : sell_Quote_portUsage

 :
sell_PaymentNotice_portUsage

1: orderMsg(Order)

2: orderConfirmationMsg(OrderConfirmation)

3: quoteRequestMsg(QuoteRequest)

4: quoteMsg(Quote)

5: shippingNoticeMsg(ShippingNotice)6: paymentNoticeMsg(PaymentNotice)

 : sell

Figure 60: Composition of ComposedComponent (UML Collaboration view)

7.2.6 Choreography examples

7.2.6.1 Choreography of a Protocol

Samples of Choreograpy of Protocol and Process component have already been provided in
UML examples section 7.2.2 "Protocol examples", in page 129. Other examples, in the
similar (or identical in many cases) CCA notation have been provided in CCA examples
section 7.1.2 "Protocol examples" in page 117.

7.3 UML-RT Notation

7.3.1 DocumentModel examples

UML utilizes for the specification of structural message payloads, the standard UML
model elements and notation. Please refer to UML examples section 7.2.1
"DocumentModel examples" in page 128.

7.3.2 Protocol examples

7.3.2.1 Protocol,RequestReplyProtocol, FlowProtocol

ad/2001-02-19 Part IIIa

IIIa-142 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

OrderBT
«Protocol»

OrderConfirmation ()
OrderDenied ()

Order ()

QuoteBT
«Protocol»

Quote ()

QuoteRequest ()

ShippingNoticeBT
«Protocol»

ShippingNotice ()

PaymentNoticeBT
«Protocol»

PaymentNotice ()

Figure 61: Sample Protocol, RequestReplyProtocol, FlowProtocol (RT)

7.3.2.2 Protocol with SubProtocols

ComposedProtocol
«Protocol»

Quote ()
OrderConfi rmation ()
OrderDenied ()
ShippingNotice ()

QuoteRequest ()
Order ()
PaymentNotice ()

Figure 62: Sample Protocol with messages manual copied from SubProtocols (RT)

7.3.3 ComponentSpecification examples

7.3.3.1 ProcessComponents

Seller

+ / sell : Com po sedProtocol~

«Capsule»
Buyer

«Capsule»

+ / buy : ComposedProtocol

Figure 63: Sample ProcessComponents , Class view (RT)

+ / buy
 : ComposedProtocol

+ / buy
 : ComposedProtocol

+ / se l l
 : ComposedProtocol~

+ / se l l
 : ComposedProtocol~

Figure 64: Buyer and Seller ProcessComponents , Buyer, Structure Diagrams (RT)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-143

Order_seller
«Capsule»

+ / se ll _o rder : OrderBT~

Quote_seller
«Capsule»

+ / sell_quote : QuoteBT~

Pay ment_seller
«Capsule»

+ / sell_payment : PaymentNoticeBT~

Shipping_seller
«Capsule»

+ / se ll _shipping : ShippingNoticeBT

Figure 65: Some components for the ComposedComponent example, Class view (RT)

+ / sell_order
 : OrderBT~

+ / sell_order
 : OrderBT~

+ / sell_quote
 : QuoteBT~

+ / sell_quote
 : QuoteBT~

+ / sell_shipping
 : ShippingNoticeBT

+ / sell_shipping
 : ShippingNoticeBT

+ / sell_payment
 : PaymentNoticeBT~

+ / sell_payment
 : PaymentNoticeBT~

Figure 66: Order_seller, Quote_seller_Payment_seller, Shipping_seller: Structure Diagrams (RT)

7.3.4 Composition examples

7.3.4.1 Composition (as a CommunityProcess)

 / buyer_abstractR1 : Buyer / seller_abstractR1 : Seller

+ / buy
 : ComposedProtocol

+ / se l l
 : ComposedProtocol~

 / buyer_abstractR1 : Buyer

+ / buy
 : ComposedProtocol

 / seller_abstractR1 : Seller

+ / se l l
 : ComposedProtocol~

Figure 67: Sample Composition as a CommunityProcess. Structure Diagram (RT)

7.3.4.2 ContextualBinding on Community Process

 / buyer_abstractR1 : Buyer / seller_abstractR1
 : Seller_concrete

+ / buy
 : ComposedProtocol

+ / se l l
 : ComposedProtocol~

 / buyer_abstractR1 : Buyer

+ / buy
 : ComposedProtocol

 / seller_abstractR1
 : Seller_concrete

+ / se l l
 : ComposedProtocol~

Figure 68: Specialized Composition (RT)

ad/2001-02-19 Part IIIa

IIIa-144 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

7.3.5 ComponentRealization examples

See also examples for Composition «profile» Package, section 7.1.4, page 121.

7.3.5.1 ComposedComponent

 / quote_sellerR1
 : Quote_seller

 / orde r_sellerR1
 : Order_seller

 / seller_subprotocols_adapterR1
 : Seller_su bprotocols_ada pter

 / shipping_sellerR1
 : Shipping_seller

 / payment_sellerR1
 : Payment_seller

+ / sell
 : ComposedProtocol~

+ / sell_quote
 : QuoteBT~

+ / sell_order
 : OrderBT~

+ / sel l
 : ComposedProtocol~

+ / sell_quote
 : Quote BT

+ / sell_order
 : OrderBT

+ / sell_shipping
 : ShippingNoticeBT~

+ / sell_payment
 : PaymentNoticeBT

+ / sell_shipping
 : ShippingNoticeBT

+ / sell_payment
 : PaymentNoticeBT~

+ / sell
 : ComposedProtocol~

 / quote_sellerR1
 : Quote_seller

+ / sell_quote
 : QuoteBT~

 / orde r_sellerR1
 : Order_seller

+ / sell_order
 : OrderBT~

 / seller_subprotocols_adapterR1
 : Seller_su bprotocols_ada pter

+ / sel l
 : ComposedProtocol~

+ / sell_quote
 : Quote BT

+ / sell_order
 : OrderBT

+ / sell_shipping
 : ShippingNoticeBT~

+ / sell_payment
 : PaymentNoticeBT

 / shipping_sellerR1
 : Shipping_seller

+ / sell_shipping
 : ShippingNoticeBT

 / payment_sellerR1
 : Payment_seller

+ / sell_payment
 : PaymentNoticeBT~

Figure 69: ComposedComponent (RT)

7.3.6 Choreography examples

7.3.6.1 Choreography of a Protocol

UML-RT utilizes the State Machine model elements, and StateChart notation, to specify
the sequence of interactions in a protocol. Specifications similar to the ones referred in the
CCA and UML example sections should be applicable in the UML-RT.

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-145

8. Proof of correctness

To prove that the Virtual metamodel can be used to construct model instances, properly
expressing the concepts in the Conceptual Meta-Model, using the UML baseClasses and
their relationships.

A number of collaboration diagrams, at the instance level, are presented below.

These are instances (M1) of the Virtual metamodel UML classes and stereotypes (M2).

The examples presented in Section 7 – "Samples" in page 116, are rendered here.

For each model element in the examples – whether classifier, relationship or feature- a box
is included in the diagram. For each metarelationship between metamodel elements, a line
is included in the diagram.

The author apologizes, if role names are difficult to read, or obscure parts of the diagram.
The author was unable to re-position role name texts in the diagram, for improved
legibility.

8.1.1 DocumentModel proof

Quote :
CompositeData

customerName : Attribute

date : Attribute

time : Attribute

part : Attribute

quantity : Attribute

unitPrice : Attribute

totalPrice : Attribute

String : DataType
type{ordered}

Date : DataType
type{ordered}

Time : DataType
type{ordered}

Integer : DataType
type{ordered}

Float : DataType
type{ordered}
type

{ordered}

QuoteRequest :
CompositeData

customerName : Attribute

date : Attribute

time : Attribute

part : Attribute

quantity : Attribute

type {ordered}

type {ordered}

type {ordered}

type {ordered}

PartCode :
CompositeData

familyNumber : Attribute

productNumber : Attribute

feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}
feature

owner

{ordered}
feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

type{ordered} type {ordered}

feature
owner{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

feature

owner

{ordered}

Figure 70: CompositeData (M1s)

ad/2001-02-19 Part IIIa

IIIa-146 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

8.1.2 Protocol proof

8.1.2.1 Protocol, RequestReplyProtocol, FlowProtocol

OrderBT : Protocol

buy_role_Order :
Protocol

sell_role_Order :
Protocol

orderMsg :
ProtocolMessage

 : Signal : Attribute Order :
CompositeData

orderConfirmationMsg :
ProtocolMessage

initiator=true
definedTag

 : Signal : Attribute OrderConfirmation :
CompositeData

orderDeniedMsg :
Pro to colMessa ge

 : Signal : Attribute OrderDenied :
CompositeData

QuoteBT :
RequestReplyProtocol

buy_role_Quote :
ProtocolRole

quoteRequestMsg :
ProtocolMessage

 : Signal : Attribute QuoteRequest :
CompositeData

quoteMsg :
ProtocolMessage

initiator=true

 : Signal : Attribute Quote :
CompositeData

definedTag

sell_role_Shipping
Notice : FlowRole

buy_role_Shipping
Notice : FlowRole

shippingNoticeMsg
: ProtocolMessage

 : Signal : Attribute ShippingNotice :
CompositeData

initiator=true
definedTag

PaymentNoticeBT :
FlowProtocol

buy_role_Payment
Notice : FlowRole

sell_role_Payment
: FlowRole

paymentNoticeMsg
: ProtocolMessage

 : Signal : Attribute PaymentNotice :
CompositeData

initiator=true
definedTag

ShippingNoticeBT :
FlowProtocol

sell_role_Quote :
ProtocolRole

ownedElement

namespace

ownedElement

namespace

featureowner
{ordered}

featureowner
{ordered}

signalreception

raisedSignal

context

raisedSignal

context

featureowner
{ordered}

signalreception featureowner
{ordered}

type{ordered}
owner

feature
{ordered}

featureowner
{ordered}

reception signal type type
{ordered}

featureowner
{ordered}

signalreception

raisedSignal

context

featureowner
{ordered}

type{ordered}

signalreception featureowner
{ordered}

type{ordered}

featureowner
{ordered}

signalreception featureowner
{ordered}

type{ordered}

ownedElement

namespace

ownedElement

namespace

featureowner
{ordered}

signalreception featureowner
{ordered}

type{ordered}

ownedElement

namespace

ownedElement

namespace

featu reowner
{ordered}

type{ordered}

ownedElement

namespace

ownedElement

namespace

Figure 71: Sample Protocol, RequestReplyProtocol, FlowProtocol (M1s)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-147

8.1.2.2 Protocol with SubProtocols

Sales_protocol :
Protocol

buy_Sales_role :
ProtocolRole

sell_Sales_role :
ProtocolRole

initiator=true

OrderBT : Protocol

buy_role_Order :
ProtocolRole

sell_role_Order :
ProtocolRole

initiator=true

 : RequestReplyProtocol

buy _role_Quote :
ProtocolRole

initiator=true

sell_role_Shipping
Notice : FlowRole

buy_role_Shipping
Notice : FlowRole

initiator=true

PaymentNoticeBT :
FlowProtocol

buy_role_Payment
Notice : FlowRole

sell_role_Payment
: FlowRole

initiator=true

ShippingNoticeBT :
FlowProtocol

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

definedTag

definedTag

definedTag

definedTag

definedTag

sell_role_Quote :
ProtocolRole

 : Association

 : AssociationEnd

 : AssociationEnd

 : Association

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : Association

 : AssociationEnd

 : Association

 : AssociationEnd

 : AssociationEnd

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : Association

 : AssociationEnd

 : AssociationEnd

 : Generalization

 : AssociationEnd

 : Association

 : AssociationEnd

 : Generalization

 : AssociationEnd

 : Association

 : AssociationEnd

 : Generalization

 : AssociationEnd

 : Association

 : AssociationEnd

 : Generalization

 : Dependency

 : Dependency

 : Dependency

 : Dependency

ownedElement

namespace
ownedElement

namespace

clientDependency

client

clientDependency

client

clientDependency

client

type

t y pe

ty pe

t y pe

t y pe

t y pe

ownedElement

namespace

ownedElementnamespace

ownedElement

namespace

ownedElement
namespace

supplierDependencysupplier

ownedElement
namespace

ownedElement

namespace

supplierDependencysupplier

ownedElement
namespace

ownedElement

namespace

supplierDependencysupplier

generalizationchild

generalizationchild

generalizationchild

generalizationchild

generalizationchild

generalizationchild

generalizationchild

generalizationchild

connection

connection

type

connection

connection

t y pe

connection

ownedElementnamespace

type

connection

connection

type

ty pe

parentspecialization

parentspecialization

parentspecialization

parentspecialization

connection

connection

type

parentspecialization

connection

connection

type

parentspecialization

type

connection

connection

type

parentspecialization

connection

t y pe

connection

parentspecialization

supplierDependency supplier

access : Stereotype

extendedElement

stereotype

extendedElement

stereotype

extendedElement

stereotype

extendedElement

stereotype

Figure 72: Sample Protocol with SubProtocols (M1s)

ad/2001-02-19 Part IIIa

IIIa-148 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

8.1.3 ComponentSpecification proof

8.1.3.1 ProcessComponents

Sales_protocol :
Protocol

buy_Sales_role :
ProtocolRole

initiator=true
definedTag

Se ll e r :
ProcessComponent

sell :
ProtocolPort

 : Genera l ization : Generalization

buy :
ProtocolPort

Buyer :
ProcessComponent

se ll_Sales_role :
ProtocolRole

ownedElementnamespace

specialization

parentparent

specialization

ownedElementnamespace

generalization

child

generalization

child

ownedElementn amespace

o wnedElementnamespace

 : Dependency

access : Stereotype

extendedElement

stereotype

clientDependency
client : DependencyextendedElement

stereotype

supplierDependency

supplier

supplierDependency

supplier

clientDependencyclient

Figure 73: Sample ProcessComponents, with PropertyDefinitions, and ProtocolPorts (M1s)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-149

OrderBT : Protocol

buy_role_Order :
ProtocolRole

sell_role_Order :
Proto colRole

isInitiator=true

QuoteBT : Protocol

buy_role_Quote :
ProtocolRole

is Ini tia tor=true

sell_role_Shipping
Notice : FlowRole

buy_role_Shipping
Notice : FlowRole

is Ini tia tor=true

PaymentNoticeBT :
FlowProtocol

buy_role_Payment
Notice : FlowRole

sell_role_Payment
: FlowRole

isInitiator=true

ShippingNoticeBT :
FlowProtocol

definedTag

definedTag

definedTag

definedTag

Seller_Order :
ProcessComponent

sell_Order_port :
ProtocolPort

 : Generalization

Seller_Quote :
ProcessComponent

sell_Quote_port :
ProtocolPort

 : Generalization sell_role_Quote :
ProtocolRole

Seller_ShippingNotice :
ProcessComponent

sell_ShippingNotice_port :
ProtocolPort

 : Generalization

Seller_PaymentNotice :
ProcessComponent

sell_PaymentNotice_port
: ProtocolPort

 : Generalization

ownedElement
namespace

ownedElement
namespace

ownedElement
namespace

ownedElement
namespace

ownedElement
namespace

ownedElement
namespace

ownedElementnamespace generalizationchild parentspecialization

ownedElementnamespace generalizationchild parentspecialization

ownedElementnamespace generalizationchild parentspecialization

ownedElementnamespace generalizationchild parentspecialization

access : Stereotype

 : Dependency

 : Dependency

 : Dependency

 : Dependency

clientDependency

client

clientDependency
client

supplierDependency supplier

clientDependency

client

supplierDependency supplier

clientDependency
client

supplierDependency supplier

extendedElement

stereotype extendedElement

stereotype

extendedElement

stereotype

extendedElement

stereotype

Figure 74: Some components for the ComposedComponent example (M1s)

ad/2001-02-19 Part IIIa

IIIa-150 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

8.1.4 Composition proof

8.1.4.1 Composition (as a CommunityProcess)

Seller :
ProcessComponent

sell :
ProtocolPort

buy :
ProtocolPort

Buyer :
ProcessComponent

Market :
CommunityProcess

Seller_usage :
ComponentUsage Buyer_usage :

ComponentUsage

sell_usage :
PortUsage

buy_usage :
PortUsage

 : Generalization : Generalization : Generalization :
Generalization

 : Connection : AssociationEnd : AssociationEnd

ownedElement namespace

ownedElementnamespace

ownedElement

namespace

ownedElementnamespace

generaliza tion

child

ownedElementnamespace

generalization

child

generalization

child

generalization

child

parent

specialization

parent

specialization

parent

specialization

parent

specialization

connection

connection

type

type

 : Dependency : Dependency access : Stereotype
extendedElement stereotype

extendedElementstereotype
clientDependency

client clientDependency

client

ownedElementnamespace

supplierDependency

supplier

ownedElementnamespace

supplierDependency

supplier

Figure 75: Sample Composition as a CommunityProcess (M1s)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-151

8.1.4.2 ContextualBinding on Community Process

OffshoreMarket :
CommunityProcess

 : Generalization

OffshoreSeller :
ProcessComponent

 : Generalization

 : ContextualBinding

Seller :
ProcessComponent

sell :
ProtocolPort

buy :
ProtocolPort

Buyer :
ProcessComponent

Market :
CommunityProcess

Seller_usage :
ComponentUsage Buyer_usage :

ComponentUsage

sell_usage :
PortUsage

buy_usage :
PortUsage

 : Generalization : Generalization : Generalization :
Generalization

 : Connection : AssociationEnd : AssociationEnd

generalization

child

clientDependency client

parent

specialization

generalization

child

parent

specialization

argument
{ordered}

supplierDependency

supplier

ownedElementnamespace

generalization

child

ownedElementnamespace

generalization

child

generalization

child

generalization

child

parent

specialization

parent

specialization

parent

specialization

parent

specialization

connection

connection

type

type

access : Stereotype : Dependency : Dependency

extendedElementstereotype

extendedElement stereotype

ownedElementnamespace

supplierDependency

supplier
ownedElementnamespace

supplierDependency

supplier

clientDependency

client

ownedElement namespace

ownedElementnamespace

ownedElement

namespace

clientDependency

client

Figure 76: Specializing Composition with ContextualBinding (as a CommunityProcess) (M1s) (as Collaboration)

8.1.5 ComponentRealization proof

See also proof for Composition «profile» Package, section 8.1.4, page 150.

ad/2001-02-19 Part IIIa

IIIa-152 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

8.1.5.1 ComposedComponent

Seller_Order :
ProcessComponent

sell_Order_port :
ProtocolPort

Seller_Quote :
ProcessComponent

sell_Quote_port :
ProtocolPort

Seller_ShippingNotice :
ProcessComponent

sell_ShippingNotice_port :
FlowPort

Seller_PaymentNotice :
ProcessComponent

sell_PaymentNotice_port
: FlowPort

sell :
ProtocolPort

 : Generalization sell_Sales_role :
ProtocolRole

Sales_protocol :
Protocol

buy_Sales_role :
ProtocolRole

initiator=true

Seller_composed :
ComposedComponent

definedTag

Seller_Order_usage :
ComponentUsage

Seller_Quote_usage :
ComponentUsage

Seller_ShippingNotice_usage
: ComponentUsage

Seller_PaymentNotice_usage
: ComponentUsage

 : Generalization

 : Generalization

 : Generalization

 : Generalization

sell_Order_portUsage
: PortUsage

sell_Quote_portUsage
: PortUsage

sell_ShippingNotice_portU
sage : PortUsage

sell_PaymentNotice_
portUsage : PortUsage

 : Gener alization

 : Generalization

 : Generalization

 : Generalization

 : Connection

 : Connection

 : Connection

 : Connection

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

 : AssociationEnd

buy_proxy :
PortProxy

 : Generalization

 : Connection

 : AssociationEnd

 : AssociationEnd

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

generalizationchild

type

parentspecialization

ownedElement

namespace

ownedElement

namespace

generalizationchild

ownedElement

namespace

generalizationchild

ownedElement

namespace

generalizationchild

ownedElement

namespace

generalizationchild

ownedElement

namespace parentspecialization

parentspecialization

parentspecialization

parentspecialization

generalizationchild

generalizationchild

generalizationchild

generalizationchild parentspecialization

parentspecialization

parentspecialization

parentspecialization

connection

connection

connection

connection

type

type

type

type

connection

connection

connection

connection

type

type

type

generalizationchild

ownedElement

namespace

parentspecialization

connection

connection

type

access : Stereotype

 : Dependency

 : Dependency

supplierDependencysupplier

extendedElement

stereotype

extendedElement

stereotype

 : Dependency

supplierDependencysupplier

supplierDependencysupplier
extendedElement

stereotype

 : Dependency

 : Dependency

supplierDependencysupplier

supplierDependencysupplier

extendedElement

stereotype

extendedElement

stereotype

clientDependency

client

ownedElement
namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

ownedElement

namespace

clientDependencyclient

clientDependency

client

clientDependency

client

taggedValue

Figure 77: ComposedComponent (M1s)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-153

8.1.6 Choreography proof

8.1.6.1 Choreography of a Protocol

OrderBT : Protocol

buy_role_Order :
Protocol

sell_role_Order :
Protocol

orderMsg :
ProtocolMessage

orderConfirmationMsg :
ProtocolMessage

orderDeniedMsg :
ProtocolMessage

 : Signal

 : Signal

 : Signal

 : Attribute

 : Attribute M

 : Attribute M OrderDenied :
CompositeData

OrderConfirmation :
CompositeData

Order :
CompositeData

initiator=true

featureowner
{ordered}

featureowner
{ordered}

type type
{ordered}

type{ordered}

definedTag

 : ActivityGraph

 : Start

 : MessageStep : SendAction

buy_role_Order_partition
: Partition

sell_role_Order_partition
: Partition

 : CompositeState

 : MessageStep : SignalEvent

 : MessageStep

 : MessageStep

 : MessageStep

 : MessageStep

 : TerminateFailure

 : TerminateSuccess

 : SendAction

 : SendAction

 : SignalEvent

 : SignalEvent

 : Pseudostate

kind=
#junction

ownedElement

namespace

ownedElement

namespace

featureowner
{ordered}

featureowner
{ordered}

signalreception

raisedSignal

context

raisedSignal

context

signalreception
owner

feature
{ordered}

featureowner
{ordered}

reception signal

type{ordered}

outgoing

source

effect

signal

contents

contents
contents
contents
contents

contents

contents
contents
contents

contents

trigger

targetincoming

signal

occurrence

effect

effect

trigger

trigger

signalsignal

occurrence

signal

occurrence
target

incoming

target

incoming

top

context

behavior

transitions

partition
partition

transitions

transitions

transitions

transitions

transitions

outgoing

source

outgoing

source

signal

subvertex

container

subvertex

container

subvertex

container

subvertexcontainer

Figure 78: Choreography of a Protocol (M1s)

ad/2001-02-19 Part IIIa

IIIa-154 A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326

8.1.6.2 Choreography of a Protocol with sub-Protocols

Sales_protocol :
Protocol

buy_Sales_role :
ProtocolRole

sell_Sales_role :
ProtocolRole

buy_role_Order :
ProtocolRole sell_role_Order :

ProtocolRole

buy_role_Quote :
ProtocolRole

buy_role_Shipping
Notice : FlowRole

sell_role_Shipping
Notice : FlowRole

buy_role_Payment
Notice : FlowRole sell_role_Payment

: FlowRole

 : SubProtocolRole

sell_role_Quote :
ProtocolRole

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : Generalization

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : SubProtocolRole

 : ActivityGraph

 : CompositeState
buy_Sales_role_partition :

Partition sell_Sales_role_partition
: Partition

 : Start

 : TerminateFailure

 : TerminateSuccess

 : ActionState : ActionState

 : ActionState : ActionState

 : ActionState : ActionState

 : ActionState : ActionState

 : Initiates

 : Initiates

 : Transition

 : Initiates

 : Initiates

 : Transition

 : Transition

 : Transition

 : Transition

subProtocol subProtocol

subProtocol subProtocol

subProtocol

subProtocol

subProtocol

subProtocol

ownedElement

namespace
ownedElement

namespace

contents

generalizationchild
parentspecialization

parentspecialization

parentspecialization

parentspecialization

parentspecialization

parentspecialization

parentspecialization

parentspecialization

generalizationchild

generalizationchild

generalizationchild

top

partition
partition

context

behavior

transitions

transitions

transitions

transitions

t ransitions

transitions

transitions

transitions

contents

contents

outgoingsource

contents

outgoingsource
contents

contents

outgoing

source contents

outgoingsource contents

contents

targetincoming

targetincoming

targetincoming
contents

t arget incoming

targetincoming

target

incoming contents

target
incoming

contents

target
incoming

contents

target
incoming

contents

contents

 : Transition
transitions

outgoing
source

targetincoming

outgoingsource
outgoing
source

contents

outgoing
source

contents

subvertex

container

subvertex

container

subvertex

container

subvertex

container

subvertex

container

subvertex

container

subvertex

container subvertexcontainer

subvertex

container

subvertex

container

subvertex

container

outgoingsourceoutgoing
source

Figure 79: Choreography of a Protocol with sub-Protocols (M1s)

8.1.7 High Level Activity Graph of Composition proof

8.1.7.1 High Level Activity Graph of a Composition

Figure 80: High Level Activity Graph of a Composition (M1s)

changes on ad/2001-02-19 Part IIIa

A UML Profile for Enterprise Distributed Object Computing Part IIIa – CCA Profile Version 0.92 2001-02-2326 IIIa-155

9. References

[UML1.4] OMG Unified Modeling Language Specification, Version 1.4 beta R1,
November 2000, OMG Document ad/ 2000-11-01
http://cgi.omg.org/cgi-bin/doc?ad/00-11-01.pdf

[OORAM] "Working with Objects : the OORAM Software Engineering Method", Trygve
Reenskaugh, Per Wold and Odd Arild Lehne, 1996 Manning Publications Co. ISBN 1-
884777-10-4 also by Prentice-Hall ISBN 0-13-452930-8

[ROOM] "Real-Time Object-Oriented Modeling", Bran Selic, Garth Gullekson and Paul
T. Ward, 1994 John Willey & Sons, Inc. ISBN 0-471-59917-4

[UML-RT] "Using UML for Modeling Complex Real-Time Systems", Bran Selic,
ObjectTime Limited, Jim Rumbaugh, Rational Software Corporation, March 11, 1998.
http://www.rational.com/media/whitepapers/umlrt.pdf

[CATALYSIS] "Objects, Components and Frameworks with UML – The CatalysisSM
Approach" Desmond Francis D'Souza and Alan Cameron Willis, 1999 Addison-Wesley
ISBN 0-201-31012-0

