A UML Profile for Enterprise Distributed Object Computing

Joint Revised Submission
Part I111a— Component Collaboration Architecture
Profile
Version 0.92
26 February 2001
Submitted by: Supported by:
CBOP Hitachi
Data Access Technologies SINTEF
EDS Netaccounts
Fujitsu
lona Technologies
Open-IT

Sun Microsystems

©Copyright 2000, CBOP, Data Access Technologies, EDS, Fujitsu, lona Technologies, Open-IT, Sun Microsystems.

CBOP, Data Access Technologies, EDS, Fujitsu, lona Technologies, Open-1T, Sun Microsystems hereby grant to the
Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this
document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Changes on OM G Document Number: ad/2001-02-19

ad/2001-02-19 Part Illa

Foreword

The ECA UML for EDOC Profile Submission

The ECA UML for EDOC Profile Submission is a specification for aUML Profile for
Enterprise Distributed Object Computing, prepared by the submitting team listed below in
response to the OA&DTF RFP 6 (UML Profile for EDOC, OMG Document ad/99-03-10).

Co-submitting Companies

This submission is prepared by the following companies:

?? CBOP

?? Data Access Technologies
?? EDS

?? Fujitsu

?? lona Technologies

?? Open-IT

?? Sun Microsystems

Supporting companies are:

?? Hitachi
?? Netaccounts
?? SINTEF

Status of this document

Ia-ii

This document is the second iteration in a submission process that commenced in October
1999, when initial submissions were made. At that time it was hoped that a single joint
submission team could be formed to prepare a single Final submission by thistime.
Regrettably, because the requirements of the RFP are very wide and comple, it has not
been possible to achieve that aim, and although considerable effort has been expended to
consolidate all the ideas and requirements of the submitting team, it is acknowledged that
thereis still some work required to reduce conceptua overlap and produce a complete and
internally consistent submission.

It isthe faith of the submission team that this can be done, in collaboration with other
UML for EDOC submitters not members of this submission team, in the time between
review of this revised submission and the deadline for a Final submission that is agreed at
the ADTF meeting in Irvine in February 2001.

The set of documents is acknowledged to be incomplete at the current issue. In particular:

A major element of the submission, the Distributed Component Profile (Part 1V) is not
included in this set, but is published as a separate submission, submitted by a set of

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

companies largely the same as the ECA consortium. This document may be found at
ad/2001-02-20. The DCP details how to utilize the UML to specify a particular kind of
component called a Distributed Component or DC. A DC can usefully be characterized as
being:

?? apluggable autonomous software artifact that has a“ distributed” interface
?? represents a single concept
?? isintended to be deployed as a managed run-time artifact

?2? when implemented and deployed, will typically execute in a single address space.

It is the intention of the submitters to prepare afully worked example that uses as much of
the profile as possible. Thiswill form Part VI of the submission, but the work has not yet
been completed.

Guide to the Submission

This submission is divided into the following parts as illustrated by the figure below:

Part | is the formal response to the submission as required by the RFP. Part 1 calls up the
remaining partsin the set to create a complete submission.

Part 11 describes the Enterprise Collaboration Architecture (ECA) which is the framework
for system specification using the EDOC Profile. It provides a detailed rationale for the
modelling choices made and describes how the other elements in the submission, detailed
in Part 111, may be used, within the viewpoint oriented framework of the Reference Model
of Open Distributed Processing (RM-ODP), to model all phases of a software system’s
lifecycle, including, but not limited to:

?? the analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements;

?? the design and implementation phases, when detailed specifications for the system’s
components are developed;

?? the maintenance phase, when, after implementation, the system’s behavior is modified
and tuned to meet the changing business environment in which it will work.

Part 111 contains the detailed profile specifications for the modelling elements of the
profile, specifically:

?? the Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to modd, at varying
and mixed levels of granularity, the structure and behavior of the components that
comprise a system;

?? the Entity profile, which describes a set of UML extensions that may be used to model
entity objects;

?? the Event profile, which describes a set of UML extensions that may be used on their
own, or in combination with the other EDOC elements described in Part 111, to model
event driven systems;

?? the Process profile, which describes a set of UML extensions that may be used on their
own, or in combination with the other EDOC elements described in Part 111, to model
system behavior in the context of the business it supports;

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ia-iii

ad/2001-02-19 Part Il1a

?? the Relationships profile, which describes the extensions to the UML core fecilities to

meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular.

Part 1V is amapping of the ECA concepts to the Distributed Component Profile (DCP).

Part V isthe Patterns Profile, which defines how to use UML and relevant parts of the
ECA profile to express object models such as Business Function Object Patterns (BFOP)
using pattern application mechanisms.

Part V1 details worked examples illustrating all aspects of the Profile. (Note that this Part
is not complete and not included in this Revised Submission.)

Arrows indicate that, for
completeness, the document pointed
to needs to be consulted for full
understanding of the document doing
the pointing.

Part Il - The ECA
Architecture
Rationalefor the
approach
Structure of an ECA
specification

Part | - Responseto RFP

Part IV - Part V -
Mapping to Patterns

Distributed
Component
Profile (DCP)

Part Il1a- The CCA

Profile
Recursive Component
Specification
Use of Classifiers,
Collaborations,
Activity Graphs

Part I11d - Part Ille-
et il - et llle= Process Relationships
Entity profile Event profile . .

profile profile

Part [11

ECA Submission Structure

Ia-iv A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Table of Contents

FFOTEBIWOIT ...ttt h et h e h e s bt e e bt e e bt e e bt e s b e e eE e e e R e e eR e e eb e e ab e e aR e e abeeabeesEeeabeenbeenbeenreenreenreens i
The ECA UML for EDOC Profile SUDMISSION.cociiiiiiiieiie e i
CO-SUDMITEING COMPBNIES ... ueeeeieieeeiieeeieeeeiee et e e et e e sste e e aaeeesteeesneeeeseeesnseeesnseesneeesnseeeanseeeneens ii
StAtUS OF ThiS AOCUMENT ..ottt naneene s i
GUIE L0 thE SUDIMISSION......c..eiiiieiei ettt n e nn e eneas i

TADIE OF CONLENES. ...ttt bt h et h s s a e e s e e s et e e et s et s ab e e e b e ean e ean e snneeareenneeane e \Y

TADIE OF FIQUIES. ...ttt ettt h et h e a e e st e e e bt e e ebe e e shte e sabe e eabe e e be e e abee e sabeesnbeesnbeeennes Vii

3 g1 T [N 1 o o TP PR PR PR PRRPRRPRN 1
1.1 DOCUMENE SEBLUSeeeieeeeireeesireeeseee s e s e s s smne e st ss e e e snr e e sne e e snr e e s anneesne e e nnneesnneena 1
1.2 Logical MetaMode & UML Profile..... ...t 2
R B O 07N o1 = £ (o] o ISP PRSP PPRURPUPRTRN 2

2. RAIONAIE.....e ettt bbb h bR R e R e e R et R e R e e R e e nR et R e e nRe e aRe e R e e neenaeennes 3
2.1 ProblemSto DE SOIVEDooiiiieee s 3
A N o] o o 0 RS 6
2.3 CoNCEPLUBI FramMEWOTKcoeiiiieiii ittt 9

3. CCA Logica Meta-Model SPECITICAIIONciiiuiiiiiieiiee ettt 11
3.1 CCA concept — UML Stereotype — UML DaSEcooouiiiiiiee e 11
3.2 UML Stereotype — Tagged VaAIUEScoouiie ettt 12
3.3 ENUMENELION VAIUBS ..ottt en e e nn e ne e s 13
3.4 Process Component DEfINITIONceieiiie e e e s eesneee s 13
TSR = (00 0o IS o= o1 o= 1 o o S 21
3.6 Component REAIIZALION............oi it e et e e st e e eneeeeaees 27
G A 1o o= 1 1 o o TS 32
I O gTo (= oo = o] 1 |V P TSP PR PSP 43
3.9 DOCUMENE IMOE ..ottt n e ne s 53
T (0 1Y oo (= LY/ = gT="o = 0= o | S 59
3.11 Combined MOTEl DIi@gramM.......ccocueie ettt esne e e eae e e sneeeesneeeennes 63

N [0t 1 Lo o TP PR URRPPRORPPRRPRN 64
4.1 Process Component Specification NOTEHTONcc.oiviiiriiiieiee e 64
4.2 ProtOCOI NOBEIONeeiiieiieeitieieeeie ettt n e s n e nneennnean 65
4.3 Composite CoOMPONENE NOBLION.coveeieeieieieeiee et n e 66
4.4 Primitive CompPONeNnt NOTBHONcooiiee i eee e et e e e e see e e seeeeneeeens 68
4.5 Community ProCeSS NOLBLION.eieiieeiiiie e eiee et e e e e et e e see e e e e seeeesteeesneeeenneeeans 68
4.6 COMPOSITION NOLBION.c.eieeiiiie e eeee et e et e e e et e e e et e e ste e e saeeesaneeesnneeesnseeenneeeans 68
4.7 Choreography NOBLION.ccciie it eee et e et e e st e e e seee e s eneeeseeeesnreeenneeeans 69
4.8 Data MOOE! NOBLIONceiueiiirieieesiee ettt sn e e s e e e e s neesneennneens 69
4.9 Mode Management NOLEHTON..........coiiiiriiie e e e e e s e e seeeenaeeeens 69
VIO DT e\ F=Tot="e (= g N\ o] 7= 1 o o S TRRSTRI 69

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ia-v

ad/2001-02-19 Part Illa

5. UML Profile SPECITICATIONcciiueieieiie ettt ettt ettt et e et e sab e e s abe e sbe e e abeeesaneasabeens 71
ES T8 A 1 10T (¥ o[o TR PP PSR 71
5.2 Reationship with Conceptual MetaModecoooiiiiiii e 71
5.3 ChoiCe Of UML ElEMENES......c.eiiiiiiieiieiieeee ettt 71
5.4 PrOfil@ SIUCIUIE.....coeiiiie ettt et n e e e e ne e s 72
5.5 ComponentSpecification «profile» Packagecoooeeriieiei e 73
5.6 Protocol «profiles PaCKage..........cevi i e 79
5.7 ComponentRealization «rofile» Package...........ccveiiiiiieie e 85
5.8 Composition «profile» PaCkage...........cov i e 87
5.9 Choreography «profiles Package.c.ooeee i 94
5.10 DocumentModel «rofile» PaCkageccoe it 101
5.11 High-level ActivityGraph of 2 COMPOSITIONeiiiiieiiie e 102
5.12 Common «Profile» PaCKBOR.........cueie et 103
5.13 OWNErs «rofilen PaCKBOR.coiouiieiiee ettt eeee e 106

LS 0 gL =] £ (@ I TP OTRR 110
6.1 Invariant CoNStraiNtS (OCL)ccicveieiieeeiiee et e et et e e e et este e e seteeeneeesnneeesnreeeneeeans 110
6.2 Definition CoNSraiNtS (OCL)cueieiieeeiiee e siee ettt et eeseteeesneeesteeesneeeeneeeens 111

A 1110 =S USROS 116
4% R O 07N \\ [0 = 1 o PP OUR PR PRPRPRRPIN 116
7.2 UML NOEBHON ...ttt e st e n e e s ne e sin e e s e e nnnennneeas 128
7.3 UML-RT NOEBION.ccueiiiieiieiiei ettt an e sneesnneeneesneennneeas 141

8. PrOOF Of COMECINESS ... ti ittt b e bbbt b e et r e e r e e r e e re e neene s 145

0. REFEIEICES. ...ttt E e R R R Rt Rt E e Rt r e r e re e ne e 155

Ia-vi

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Table of Figures

Figure 1: Structure and dependencies of the CCA Conceptual Meta-Model Packages..........cccoveeevieenieniiienene 9
Figure 2: ComponentDefinition Conceptual MetaMOEoooiiiiiiiiiii e 14
Figure 3: Protocol Conceptual MEtarMOOEc..ioiiiiiiii ittt sae et e saee e 21
Figure 4: ComponentRealization Conceptual Meta-MOdEL............ooouiiiiiiiii e 28
Figure 5: Composition Conceptual MetaMOEooouiiiiii e 33
Figure 6: Choreography Conceptual MetaMOEcocuoiiiiiiii e 44
Figure 7: DocumentModel Conceptual Meta-MOdEoooiiiiiiii e 54
Figure 8: ModelManagement Conceptual Meta-MOdE]cooiiiiiiiii e 60
Figure 9: Combined Conceptual MEtarMOOEoouiiiiiiiiii et saae e sabeeaas 63
Figure 10: ProcessComponent SPeCifiCation NOLALION............cuiiiiiiiiie ettt 64
Figure 11 ProtOCOI NOTATON (L) ...eeueeeiureeiieeeiteeestee et et et e bt e stee e sab e e sbe e s be e e sbee e saeeesabeesabeesbeeesseeesnaeesnrenns 65
Figure 12: ProtOCOl NOLAIION (2)c.eeeiieiiiei ettt ettt et ettt st e et e e st e e e sbee e saee e sabeesabeesbeeeabeeeanteesnrenns 66
Figure 13: Composite COMPONENE NOLELIONeoiitiieiiie ettt ettt ettt ee st e e sbe e saee e sabeesbeeesbeeesaeeesnaeesnreeaas 67
Figure 14: PrimitiveCOmMPONENE NOLBLIONocueiiitiieieieeitee ettt ettt st e st e e sbee e saee e sabe e sbeesbeeesaeessnaeesnreaaas 68
Figure 15: COMMUNItYPrOCESS NOLBLIONciiteiiititeieieeitee e tee ettt et e st e st e e sbe e e saee e sabeesabeesbeeesbeeesnneesnbenaas 68
Figure 16: DataM OO NOLALIONeeeiieiiiei ettt ettt ettt e et e e e sbee e saee e sabeesabeesbeeesbeeesnbeesnrenans 69
Figure 17: DataM anager NMOLALION.eiiieeeiieeitie ettt stee et e e sbe e seee e sabeesbeesbeeasbeeesaeeesabeesabeesbeeasbeeasnteesnrenn 69
Figure 18: Structure and dependencies of the CCA «profile» Packagesccccveiiiiiiiiiiiiiicciee e 73
Figure 19: Class Diagram of the Virtual metamodel for ComponentSpecification «profile» Package............... 74
Figure 20: Class Diagram of the Virtual metamodel for Protocol «profile» Package............cocvveviiiiiieiniens 79
Figure 21: Class Diagram of the Virtual metamodel for ComponentRealization «profile» Package.................. 85
Figure 22: Class Diagram of the Virtual metamodel for Composition «profile» Package...........c.cccocvvvvriennen. 88
Figure 23: Class Diagram of the Virtual metamodel for Choreography «profile» Package...........c.c.ccvveriennen. 94
Figure 24: Class Diagram of the Virtual metamodel for DocumentModel «profile» Package...............cc....... 101
Figure 25: Class Diagram of the Virtual metamodel for Common «profile» Package............cccococvievineennnnen. 103
Figure 26: Class Diagram of the Virtual metamodel for Owners «profile» Package.............ccccocoviiiinnnnnnn, 107
Figure 27 Sample CompositeData definition (CCA) ...t 116
Figure 28: Sample Choreographed ProtoCol (CCA)coiiiiiieeiiei ettt ettt b e sae e saee s 117
Figure 29: Sample Choreographed RequestReplyProtoCol (CCA)eiiiiiiiiieiiee ettt 118
Figure 30: Sample Choreographed FIOWPIOtOCOl (CCA)ouviiiiiiiieie ettt 118
Figure 31: Sample Choreographed FIOWProtOCOl (CCA)ouuiiiiiieiii ettt 119
Figure 32: Sample Choreographed Protocol with SUDProtocols (CCA)ooviiiiiiiiieie e 119
Figure 33: Sample ProcessSCOMPONENTS (CCA)ouiiiiieeiiee ettt ettt et esbe e sbe e saee e sabeesabeesbeeesbeeesnneas 120
Figure 34: Sample ProcessComponents (CCA) - will be used in the ComposedComponent example............ 121
Figure 35: Sample Composition as a CommunityProCess. (CCA)ooiuiriiiaiiieiieeeriie et e sbeeeieeesiee e saee s 121
Figure 36: Contextual Binding (in CommunityProCess) (CCA)ooiiiriiiaiiee ettt 122
Figure 37: ComposedComMPONENT (CCA)uiiiiiieitie ettt ee ettt et seee ettt e ebe e e sbee e sbee e sabeesabeesbeeesbeeesneeas 124
Figure 38: ProcessComponent for example on Choreography of ProcessComponent (CCA)ccoveeeveeenenen. 126
Figure 39: Choreography of ProcessComponent — with sub-ProtocolS (CCA)ceviiieiiiieiee e 126
Figure 40: Choreography of ProcessComponent (CCA)o it stee sttt ettt e saee e saee s 127
Figure 41: High Level ActivityGraph of CompoSition (CCA)eiiiiieiiieiiee et 128
Figure 42: Sample CompositeData definition (UML)ooiiiiiiiiii e 128
Figure 43: Sample ProtOCOI (UML)o.eieiei ittt ettt ettt e sat e smbe e s abe e ebe e e nbeeeenee s 129
Figure 44: SampleRequestRePIYPIOtOCOI (UML)oo ittt 129
Figure 45: Sample FIOWPIOtOCO! (UIML).......oiiiiiiiii ettt ettt et sae e st e st eebe e e sbee e enne s 130
Figure 46: Sample Choreographed ProtoCOl (UML)......ccuiiiieiiiiieie ettt 130
Figure 47: Sample Choreographed RequestReplyProtoCol (UML).......cocuiiiiiiiiiiiiiiesiie et 131

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-vii

ad/2001-02-19 Part Illa

Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:

Ia-viii

Sample Choreographed FIOWPIrotOCOl (UML)ccouiiiiiiiiiiieiiee et 131
Sample Protocol, RequestReplyProtocol, FlowProtocol (UML Collaboration view)................c...... 132
Sample Protocol with SUDProtoCoIS (UML)coiuiiiiieiie e 133
Sample Choreographed Protocol with exploded SubProtocols (CCA)eoeveeiiiriiiieiie e 134
Sample Protocol with SubProtocols (UML Collaboration VIew)ccoceeeieieiieeiiee e 135
Sample ProcessComponents, with PropertyDefinitions, and Protocol Ports (UML)c.ccceeveeene 135
Some components for the ComposedComponent example (UML)ooceoieiiiiniiienieenieenieee 136
Sample Composition as a CommuNityProCess (UML)......ccuiiiiiaiieiiieieiee et 137
Sample Composition as a CommunityProcess, (UML Collaboration VIew)ccccceeveeeiieeniennne 137
Contextual Binding on CommunityProcess (UML)cooiiiiiiiiiieiie e 138
Contextua Binding on CommunityProcess, compact form (UML)cccoociiiiinnie e 139
ComposedComMPONENE (UML) ...ttt ettt e s be e e sbee e saee e snneaans 140
Composition of ComposedComponent (UML Collaboration VIeW)ccceeeeeiieenieeiieneniee e 141
Sample Protocol, RequestReplyProtocol, FIowProtocol (RT)oooveiviiiiiieiieeieeee e 142
Sample Protocol with messages manual copied from SubProtocols (RT)......ccccveveeeiieeriieniiienennns 142
Sample ProcessComponents , Class VIEW (RT) ...oooveiiiiiiiieeeee e 142
Buyer and Seller ProcessComponents, Buyer, Structure Diagrams (RT)cccveveeevieenienniienenen 142
Some components for the ComposedComponent example, Classview (RT)coocoveveriieeniennns 143
Order_seller, Quote_seller_Payment_seller, Shipping_seller: Structure Diagrams (RT) 143
Sample Composition as a CommunityProcess. Structure Diagram (RT)cooooveveeeiieeniennieeen 143
Specialized COMPOSITION (RT) ..uuiiiiiiiiiie ettt ettt e st e e sbe e e saee e saneeans 143
CompOoSEdCOMPONENT (RT) ... eieeiiee ettt ettt et sbe e saee e sabe e s be e e sbeeesaeeesnneaaas 144
COMPOSITEDBLA (MLS) ...ttt ettt ettt sttt ettt b et st e e st e e e be e e abe e e sate e sabeesbeeaabeeesaeeesnneaas 145
Sample Protocol, RequestReplyProtocol, FIowProtocol (M1S)........cciveiiieieiiie e 146
Sample Protocol with SUDPIOtOCOIS (MLS)...ccouiiiiiiiieeiiee et 147
Sample ProcessComponents, with PropertyDefinitions, and ProtocolPorts (M1S)cccccceeveenne 148
Some components for the ComposedComponent example (ML1S)ooveveiieeiieiiieeenie e 149
Sample Composition as a CommMUNityProCesS (MLS)ooiuiiiieiiiiiiiee et 150
Specializing Composition with Contextual Binding (as a CommunityProcess) (M 1s) (as Collaboration) 151
CompOoSEACOMPONENT (MLS) ..ottt ettt ettt et e e sbe e e sabe e sabe e s be e e sbee e saeeesnneaans 152
Choreography Of & ProtOCOI (IMLS)ceiiueiiiieeiiee ittt ettt ettt sbe e saee e saneeans 153
Choreography of a Protocol with SUb-ProtocolS (IM1S)c.eeeiieiiieiiiie et 154
High Level Activity Graph of 2 Composition (IMLS)c.eeoiiiaiiiiiieiiiee e 154
A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

ad/2001-02-19 Part Illa

1. | ntroduction

This document specifies the Component Collaboration Architecture (CCA). The CCA isa
key part of the Enterprise Collaboration Architecture (ECA), aresponseto OMG RFP for a
UML profile for Enterprise Distributed Object Computing (EDOC), and is referenced by
the response to the OMG RFP for a UML profile for Enterprise Application Integration
(EAL).

The CCA specification details how to utilize the UML to specify, at multiple levels of
granularity, components that collaborate to fulfill some purpose. Asa specification it is
intended for analysts, designers, modelers and tool builders already familiar with the
UML.

While initially targeted as a core part of the UML profiles for EDOC and EAI, the CCA is
a general-purpose architecture for recursive composition and decomposition of component-
based information systems, which may be applied to many domains.

The CCA isbased, in part, on research funded by the National Institute of Standards,
Advanced Technology Program in a co-operative agreement with Data Access
Technologies.

Authors

The Primary authors of this document are:
?? Cory Casanave — Data Access Technologies

?? Antonio Carrasco-Vaero — Data Access Technologies

In addition valuable input was received from al members of the ECS submitters team.

1.1 Document Status

Thisisadraft document. Several issues still exist with the profile and with how it uses
UML. The document is not complete (1.E. UML OCL has not been done) and there may
be inconsistencies to resolve and it certainly needs editing. This draft isintended for the
RFP submission teams working with it.

The purpose of this draft is to validate CCA against the requirements of EDOC and EAI,
provide a basis for moving ahead with these more domain specific profiles and to solicit
input and participation in its refinement.

At some point we expect to do an overall “naming” review to get the CCA termsin-line
with EDOC/EAI and general intuitiveness.

A UML Profile for Enterprise Distributed Object Computing Part I11a — CCA Profile Version 2001-02-23 Ila-1

ad/2001-02-19 Part Illa

1.2

1.3

Ila-2

111

Relation to EDOC & ECA

The CCA isapart of, but not the entire, profile for EDOC and the ECA. There are
separate specifications for the Information model, Process model, Events and Patterns.

These sub-profiles are brought together in the ECA part of EDOC and it is expected that
the ECA will reference and refine CCA for specific viewpoints and different levels of
granularity.

Logical Meta-Model & UML Profile

The specification of this profile contains alogical Metamodel. This metamodel shows the
logical structure of the concepts used in CCA in aMOF compliant structure suitable for
custom tools. The UML profile as a set of stereotypes, tagged values and constraints are
shown in relation to this logical model, providing the capability for off-the-shelf tools to
support CCA.

Most elements of the CCA Meta-Model directly correspond to UML elements or are
logical subtypes of them. These elements are defined independently in the CCA model
and then their relationship to UML elementsis shown. When CCA and UML Meta-Model
elements have the same name it may be assumed that have the same semantics.

CCA Notation

CCA models may utilize standard UML notation or a CCA specific notation. Current off-
the-shelf UML tools may use the standard UML notation while CCA aware tools may use
the CCA notation, which is somewhat more compact and intuitive.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

2. Rationale

2.1 Problems to be solved

The information system has become the backbone of the modern enterprise. Within the
enterprise, business processes are instrumented with applications, workflow systems, web
portals and productivity tools that are necessary for the business to function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system keeps
pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such away that they are not well understood, do
not integrate and are fragile. The result is that the business may become dependent on an
information infrastructure that cannot evolve at the pace required to support business
goals.

The way in which to design, build, integrate and maintain information systems that are
flexible, reusable, resilient and scalable is now becoming well understood but not well
supported. The CCA isone of anumber of the elements required to address these needs by
supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.
2.1.1 Recursive decomposition and assembly

Information systems are, by their very nature, complex. The only viable way to manage
and isolate this complexity is to decompose these systems into ssmpler parts that work

together in well-defined ways and may evolve independently over time. These parts can
than be separately managed and understood. We must also avoid re-inventing parts that
have aready been produced, by reusing knowledge and functionality whenever practical.

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down”, revealing the underlying parts.
However, systems will aso be assembled from existing or bought-in parts — building up
from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and “bottom
up” assembly of existing parts. Bringing together top-down specification and bottom-up
assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of partsin
implementation is repeated at many levels. The composition of parts at one level isthe
part at the next level up. In today’ s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure — such as operating systems,
communications, DBM S systems and desktop tools.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-3

ad/2001-02-19 Part Illa

2.1.2

2.1.3

Illa-4

Having arational way to understand and deal with this hierarchy of parts and
compositions, how they work and interact at each level and how one level relates to the
next, is absolutely necessary for achieve the business goals of aflexible and scalable
information systems.

Traceability

The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the devel opment
process at the beginning of a project may be general and “fuzzy” requirements that, as the
project progresses, become precisely defined either in terms of formal requirements or the
parts of the resulting system. Requirements at various stages of the project result in
designs, implementations and running systems (at least when everything goes well!).
Since parts evolve over time at multiple levels and at differing ratesit can become almost
impossible to keep track of what happened and why.

Old approaches to this problem required locking-down each level of the processin a
“waterfal”. Such approaches would work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Changeisreality.

Dealing with this dynamic environment while maintaining control requires that the parts
of the system and the artifacts of the development process be traceable both in terms of
cause-effect and of changes over time. Moreover, this traceability must take into account
the fact that changes happen at different rates with different parts of the system, further
complicating the relationships among them. The tools and techniques of the devel opment
process must maintain and support this traceability.

Automating the development process

In the early days of any complex and specialized new technology, there are “gurus’ able to
cope with it. However, as atechnology progresses the ways to use it for common needs
becomes better understood and better supported. Eventually those things that required the
gurus can be done by “normal people” or at least as part of repeatable “factory” processes.
As the technology progresses, the gurus are needed to solve new and harder problems — but
not those aready solved.

Software technology is undergoing this evolution. Theinitial advances in automated
software production came from compilers and languages, leading to DBM S systems,
spreadsheets, word processors, workflow systems and a host of other tools. The end-user
today is able to accomplish some things that would have challenged the gurus of 30 years

ago.

This evolution in automation has not gone far enough. It isstill common to re-invent
infrastructures, techniques and capabilities every time a new application is produced. This
is not only expensive, it makes the resulting solutions very specialized, and hard to
integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns and technology bindings so that application developers can focus on application
problems. In thisway the ability to automate is coupled with the ability to define abstract
viewpoints of a system — some of which may be constant across the entire system.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

The challenge today is to take the advances in high-level modeling, design and
specification and use them to produce factory-like automation of enterprise systems. We
can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise scale
systems. Automating the development process at this level will embrace two central
concepts; reusable parts, and model-based development. 1t will alow tools to apply pre-
established implementation patterns to known modeling patterns. CCA defines one such
modeling pattern.

2.1.4 Loose coupling

Systems that are constructed from parts and must survive over time, and survive reusein
multiple environments, present some special requirements. The way in which the parts
interact must be precisely understood so that they can work together, yet they must also be
loosaly coupled so that each may evolve independently. These seemingly contradictory
goals depend on being able to describe what isimportant about how parts interact while
specifically not coupling that description to things that will change or how the parts carry
out their responsibility.

Software parts interact within the context of some agreement or contract — there must be
some common basis for communication. The richer the basis of communication the richer
the potential for interaction and collaboration. The technology of interaction is generally
taken care of by communications and middleware while the semantics of interaction are
better described by UML and the CCA.

So while the contract for interaction is required, factors such as implementation, location
and technology should be separately specified. This allows the contract of interaction to
survive the inevitable changes in requirements, technologies and systems.

Loose coupling is necessarily achieved by the capability of the systemsto provide “late
binding” of interactions to implementation.

2.1.5 Technology Independence

A factor in loose coupling is technology independencei.e. the ability to separate the high-
level design of a part or a composition of parts from the technology choices that realize it.
Since technology is so transient and variations so prevalent it is common for the same
“logical” part to use different technologies over time and interact with different
technologies at the same time. Thus akey ingredient is the separation high-level design
from the technology that implementsit. This separation is aso key to the goal of
automated devel opment.

2.1.6 Enabling a business component Marketplace

The demand to rapidly deploy and evolve large scale applications on the internet has made
brute force methods of producing applications a threat to the enterprise. Only by being
able to provision solutions quickly and integrate those solutions with existing legacy
applications can the enterprise hope to achieve new business initiatives in the timeframe
required to compete.

Component technol ogies have already been a success in desktop systems and user

interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-5

ad/2001-02-19 Part Illa

2.2

Illa-6

include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB, .net, Bizalk. What has not emerged is the way to bring these technol ogies together
into a coherent enterprise solution and component marketplace.

Our vision is one of asimple drag and drop environment for the assembly of enterprise
componentsthat is integrated with and leverages a component marketplace. Thiswill
make buying and using a software component as natural as buying a battery for a
flashlight.

2.1.7 Simplicity

A solution that encompasses all the other requirements but is too complex will not be used.
Thus our final requirement is one of simplicity. A CCA model must make sense without
too much theory or special knowledge, and must be tractable for those who understand the
domain, rather than the technology. It must support the construction of simple tools and
techniques that assist the developer by providing a simple yet powerful paradigm
Simplicity needs to be defined in terms of the problem — how simply can the paradigm
so0lve my business problems. Simplistic infrastructure and tools that make it hard to solve
real problems are not viable.

Approach

Our approach to these requirements is to utilize the Unified Modeling Language (UML) as
abasis for an architecture of recursive decomposition and assembly of parts.

The UML is astandard that has become accepted as the way to model systems at many
levels and for avariety of purposes. Assuchitisideal for the CCA. The UML isdesigned
to be specialized for specific purposes using a mechanism called a“profile”. A profile uses
the extension mechanisms of UML to focus on a specific modeling requirement or
paradigm. In the case of the CCA thisis recursive decomposition and assembly of parts of
an information system.

At the outset it should be made clear that we are dealing with alogical concept of
component - “part”, something that can be incorporated in alogical composition. It is
referred to in the CCA as a Process Component. In some cases Process Components will
correspond and have a mapping to physical components and/or deployment unitsin a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA be
further specialized, using the same mechanisms, for specific purposes such as business-2-
business e-commerce, enterprise application integration, distributed objects, real-time etc.

It is specifically intended that different kinds and granularities of Process Components at
different levels will be joined by the recursive nature of the CCA. Thus Process
Components describing a worldwide B2B business process can decompose into application
level Process Components integrated across the enterprise which can decompose into
program level Process Components within a single system. However, this capability for
recursive decomposition is not always required. Any Process Components part may be
implemented directly in the technology of choice without requiring decomposition into
other Process Components.

The CCA describes how Process Components at a given level of specification collaborate

and how they are decomposed at the next lower level of specification. Since the
specification requirements at these various levels are not exactly the same, the CCA is

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

further specialized with profiles for each level. For example, Process Components exposed
on the Internet will require features of security and distribution, while more local Process
Components will only require away to communicate.

The recursive decomposition of Process Components utilizes two constructsin parallel:
composition (using UML Collaboration) to show what Process Components must be
assembled and how they are put together to achieve the goal, and choreography (the UML
Activity Graph) to show the flow of activitiesto achieve agoal. The CCA integrates these
concepts of “what” and “ when” at each level.

221 What is a Component Anyway?

There are many kinds of components — software and otherwise. A component is simply
something capable of composing into a composition — or part of an assembly. There are
very different kinds of compositions and very different kinds of components. For every
kind of component there must be a corresponding kind of composition for it to assemble
into. Therefore any kind of component should be qualified asto the type of composition.
CCA does not claim to be “the” component model, it is“a” component model with a
corresponding composition model.

CCA components are processing components, ones that collaborate with other CCA
components within a CCA composition. CCA components can be used to build other CCA
components or to implement roles in a process — such as avendor in a buy-sell process.
The CCA concepts of component and composition are interdependent.

There are other forms of software and design components, including UML components,
EJBs, COM components, CORBA components, etc. CCA components and composition
are orthogonal to these concepts. A technology component, such as an EJB may be the
implementation platform for a CCA component.

Some forms of components and compositions allow components to be built from other
components, thisis arecursive component architecture. CCA issuch arecursive
component architecture.

All references to component in this document are specific to the CCA component and
composition mode.

2.2.2 Process Component Libraries

While the CCA describes the mechanisms of composition it does not provide a complete
Process Component library. Process Component libraries may be defined and extended for
variousdomains. A Process Component library is essential for CCA to become useful
without having to re-invent basic concepts.

2.2.3 Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with a
specific infrastructure, executable primitive Process Components and a technology profile,
it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be realized by
agiven technology set. For example, atechnology profile for Java may enable Java

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ia-7

ad/2001-02-19 Part Illa

I1a-8

2.2.4

2.2.5

components to be composed and execute using dynamic execution and/or code generation.
A technology profile for CORBA may describe how CORBA components can be composed
to create new CORBA components and systems. In ODP terms, the technology profile
represents the engineering and technology specifications.

Some technology profiles may require additional information in the specification to
execute as desired, thisis generally done using tagged values in the specification and
optionsin the mapping. The way in which technology specific choices are combined with
a CCA specification is outside of the scope of the CCA, but within the scope of the
technology profile. For example, a Java mapping may provide away to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with atechnology profile provides for the automated
development of executable systems from high-level specifications.

For details of mappings from the CCA Profile to various engineering and technol ogy
options, see Part IV of this submission.

Specification Vs. Methodology

The CCA provides away to specify a system in terms of a hierarchica structure of
Communities of Process Components and Entities that, when combined with specifications
prepared using technology profiles, is sufficiently complete to execute. Thus the CCA
specification is the end-result of the analysis and design process. The CCA does not
specify the method by which this specification is achieved. Different situations may
require different methods. For example; a project involving the integration of existing
legacy systems will require a different method than one involving the creation of a new
real-time system — but both may share certain kinds of specification.

Notation

The CCA defines some new notations to simplify the presentation of designs for the user.
These new notations are optional in that standard UML notation may be used when such is
preferred or CCA specific tooling is not available. The CCA notation can be used to
3achieve greater simplicity and economy of expression.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

2.3 Conceptual Framework

I

Component Specification

Component
Realization
(from CcaProfile)

Composition
(from CcaProfile)

(from CcaProfile)

Vi

I

Choreography
(from CcaProfile)

Document Model
(from CcaProfile)

Protocol
(from CcaProfile)

I

Model
Management

(from CcaProfile)

Figure 1: Sructure and dependencies of the CCA Conceptual Meta-Model Packages

2.3.1

2.3.2

Process Component Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA component
is separate from how that component is realized. The contract specifies the “outside” of the
component. Inside of a component isits realization — how it satisfiesits contract. The
outside of the component is the component specification. A component with only a
specification is abstract, it is just the “outside” with no “inside’.

Protocols and Choreography

Part of a component’s specification is the set of protocolsit implements, a protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages — when they can be sent and
received. Each protocol the component supportsis provided viaa “port”, the connection
point between components.

Protocols, ports and choreography comprise the contract on the outside of the component.
Protocols are also used for large-grain interactions, such as for B2B components.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-9

ad/2001-02-19 Part Illa

2.3.3

2.3.4

2.3.5

2.3.6

I11a-10

Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an abstract
component — implementing that component.

There may be any number of implementations for an abstract component and various
waysto “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

?? primitive components — those that are built with programming languages or by
wrapping legacy systems.

?? Composed Components— Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

Composition

Compositions define how components are used. Inside of a composition components are
used, configured and connected. This connected set of component usage’ s implements the
behavior of the composition in terms of these other components — which may be primitive,
composed or abstract components.

Compositions can also include a choreography of how the components used work
together, which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes — how a set of large grain components works together for
some purpose.

Central to compositions are the connections between components, values for
configuration properties and the ability to bind concrete components to a component

usage.
Document & Information Model

The information that flows between components is described in a Document M odedl, the
structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted on
by CCA process components.

Model Management

To help organize the elements of a CCA model a“package’ structure is used exactly asit
isused in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol or component may also be nested within these, since they also act as packages.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3. CCA Logical Meta-Model Specification

3.1 CCA concept — UML Stereotype — UML base
This table summarizes the correspondence between elements of the CCA Conceptual
Meta-Model, the Stereotypes in the UML Profile, and the baseClasses of the Stereotypes.
Package Conceptual Stereotype UML baseclass | Comment
M eta-M odel
ComponentSpecification | ProcessComponent ProcessComponent Subsystem
Port Port Class abstract
Protocol Port Protocol Port Class
FlowPort FlowPort Class
PropertyDefinition Property Attribute
Granularity Enumeration
Protocol Protocol Protocol Subsystem
RequestReplyProtocol | RequestReplyProtocol Subsystem
FowProtocol Subsystem for FlowPort
ProtocolRole ProtocolRole Class
FlowRole Class For FlowPort
Interaction - - abstract
ProtocolMessage ProtocolMessage Reception
SubProtocol.onerole SubProtocolRole Class +Generalizato
ion
ComponentRealization PrimitiveComponent PrimitiveComponent Subsystem
ComposedComponent | ComposedComponent Subsystem
CommunityProcess CommunityProcess Subsystem
Composition Composition Composition Subsystem
ComponentUsage ComponentUsage Subsystem
PortUsage PortUsage Class
PortProxy PortProxy Class
ConnectionRole abstract
Connection Connection Association
PropertyValue Property Attribute (same as
PropertyD
efinition)
Contextua Binding Contextua Binding Binding
Choreography Choreography Choreography ActivityGraph
A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-11

ad/2001-02-19 Part Illa

State abstract
Transition ChoreographyTransition Transition
Start Start Pseudostate-initial
TerminateSuccess TerminateSuccess Final State
TerminateFailure TerminateFailure Final State
Split Split Pseudostate-fork
Join Join Pseudostate-join
M essageStep M essageStep Transition with
SendAction
‘effect’ or
Signal Event
‘trigger’
SubProtocol Step SubProtocol Step ActionState
SubStep SubStep SubActivityState
DocumentM odel CompositeData CompositeData Class
Common ProtoPort Class
ProtoComponent Subsystem
PropertyHolder Class
Property Attribute
Owners PortOwner Subsystem
ComponentOwner Subsystem
ConnectionOwner Subsystem
ProxyOwner Subsystem
PropertyHolderOwner Subsystem
CompositionOwner Subsystem
M essageOwner Class
PortNester Class
3.2 UML Stereotype — Tagged Values
This table summarizes the taggedV a ues defined for the Stereotypes.
Package Stereotype taggedValue type Comment
Protocol ProtocolRole initiator Boolean

ProtocolMessage

postCondition

Choreography:: Status

ComponentSpecification | ProcessComponent granularity Granularity
persistent Boolean
Protocol Port synchronous Boolean
transactional Boolean
multiple Boolean

Ila-12

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Composition Connection protocol Scope Protocol::Protocol
messageScope Protocol::
ProtocolMessage
ComponentRealization PrimitiveComponent implementationType String
implementationLocation | String
Choreography SubStep scope Choreographed
Transition precondition Choreography:: Status
3.3 Enumeration values
This table summarizes the values of the defined enumeration types.

Package Enumeration values Comment
ComponentSpecification | Granularity Program

Owned

Shared
Choreography Status Success

TimeoutFailure

TechnicalFailure

BusinessFailure

AnyFailure

Any

DirectionKind Sends
Receives

3.4

Process Component Definition

The ProcessComponent definition specifies the externals of a ProcessComponent, i.e. its
contract with other ProcessComponents. ProcessComponent specification relies on the
specification of protocols, choreographs and documents, which are documented in other
sections. A diagram relating all of the major model elements may be found on page
Error! Bookmark not defined..

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-13

ad/2001-02-19 Part Illa

+realizes .

3.4.1 Conceptual Meta-Model
Choreography
(from Choreography)
Efiname : String
<<boundary>> +subtypes
Po'rt Process Component
Bfiname : Strlng. n +component Efgranularity : String | n
Q;synchropous : Boolean @ [BEpersistent : Boolean Generalization
E¥itransactional : Boolean
) +ports 1 0.1
EXmulitple : Boolean
L/% +component§ 1 +supertype
‘ ‘ +properties | n
P SR Propert)I/ De'flnltlon <<§nuTera-l|—tion>>
Protocol Port Flow Port 0.n +typeExp %'na}r'ne il rection’ype
— e EXlinitial : Expression E¥fisends
- EXdirection : DirectionType| +constrains 0.1 Q)Iocked - Boolean EiReceives
n

1

ProtocolRole
(from Protocol)

Efiname : String
E&initiator : Boolean

+type

0..1

n
L\ +type

Data Element

(from Document Model)

Figure 2: ComponentDefinition Conceptual Meta-Model

Ila-14

3.4.1.1 Summary

A Process Component represents the contract for a component which performs actions. A
Process Component may realize a set of Ports for interaction with other Process
Components. The Process Component defines the external contract of the component in
terms of ports and a Choreography of port actions (sending or receiving messages or
initiating sub-protocols). Process components specify the externals of the component that
may be realized as concrete primitive components or composite components (See
Component Realization).

The contract of the process component isrealized viaports. A port defines a point of
interaction between process components. The simpler form of port is the Flow Port,
which may produce or consume a single data type. More complex interactions between
components use a Protocol Port, which refers to aprotocol role — one end of a more
complex interaction between two components (see “ Protocol Specification™)

Process Components may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is used.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

The specification of the process component may include Chor eography to sequence the
actions of multiple ports and their associated actions. The actions of each port may be
Choreographed. Choreography is defined in its own section.

A process component may have a supertype. One common use of supertypeisto place
abstract process components within compositions and then produce separate realizations of
those components as subtype composite or primitive components, which can then be
substituted for the abstract components when the composition is used or even at runtime..

3.4.2 Model Elements

3.4.2.1 Process Component

Extends

Choreography (Indicating that a Choreography of port actions may be specified)

Owned By

Package
Semantics

A Process Component represents an active processing component — it does something.
A Process Component may realize a set of Ports for interaction with other Process
Components and it may be configured with properties. An instance of process
component represents an abstract component, one with no defined implementation.
The subtypes of Process Component: Primitive Component & Composed Component
provide implementation detail for concrete components. Direct instances of Process
Component are abstract.

Each component realizes a set of ports for interaction with other components and has a
set of properties that are used to configure the component when it is used.

The order in which actions of the components ports do something may be specified
using Choreography.

Elements

Ports (any number)

“Ports’ isthe set of Ports on the Process Component. Each port provides a
connection point for interaction with other components and realizes a specific
protocol. The protocol may be simple and use a*“flow port” or the protocol may be
complex and use a* Protocol Port” . If alowed by its protocol, a port may send and
receive information.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-15

ad/2001-02-19 Part Illa

Supertype (zero or one) , Subtypes (any number)

A Process Component may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a process
component. A subtype component is bound by the contract of its supertypes but it
may add elements, override property values and restrict referenced types.

A subtype of acomponent may be substituted for its supertype.

Properties (Any number)

To make a component capable of being reused in avariety of conditionsit is
necessary to be able to define and set properties of that component. Properties
represents the list of properties defined for this component.

Granularity

<<More here from Oliver Sms>> A string which defines the scope in which the
component operates. The base values may be:

?? Program —the component islocal to a program instance (default)

?? Owned —the component is visible outside of the scope of a particular program
but dedicated to a particular task or session which controlsits life cycle.

?? Shared —the component is generally visible to external entities via some kind
of distributed infrastructure.

Specializations of CCA may define additional granularity values.

Persistent

Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

UML

A CCA ProcessComponent is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem, and a Stereotype of Foundation::Core::Class named
"PropertyHolder”, and the «enumeration» "Granularity”. See detailsin section 5 "UML
Profile Specification”, subsection "ComponentSpecification «profile» Package",
headings "ProcessComponent” and "Granularity” and subsection "Common «profile»
Package", heading "PropertyHolder".

Ila-16 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.4.2.2 Port
Extends

Choreographed (Indicating that a port may be Choreographed by the process
component’ s Choreography)

Owned By

Process Component
Semantics

A port realizes a ssimple or complex protocol for a process component. Port is abstract
and has two subtypes; Protocol Port and Flow Port. A Flow Port realizes a smple data
flow into or out of a component and protocol port realizes a more complex protocol.
All interactions with a process component are done via one of its ports.

When a component is instantiated each of its portsisinstantiated as well, providing a
well defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

Elements

Component (Exactly One)

A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

Transactional

Indicates that interactions with the component are transactional & atomic (in most
implementations this will required that a transaction be started on receipt of a
message). Non-transactional components either maintain no state or must execute
within atransactional component. The mechanisms for management of
transactions are defined outside of the scope of CCA.

Synchronous

A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-17

ad/2001-02-19 Part Illa

Name

The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realizes.

Multiple

Allows multiple collaborators of a compatible protocol to be attached to the port.

UML

A CCA Port isrepresented in the UML profile for CCA, as an abstract Stereotype,
with the same name, of Foundation::Core::Class. See detailsin section 5 "UML Profile
Specification”, subsection "ComponentSpecification «profile» Package”, heading
"Port".

3.4.2.3 Protocol Port

Extends

Port

Owned By

Process Component

Semantics

A protocol port is a process component port which realizes a protocol role, which is
defined as part of aprotocol (See protocol package). A protocol port is used for
potentially complex two-way interactions between components, such asis common in
B2B protocols. By realizing one of the two protocol roles of a protocol, the protocol
port takes on the responsibility of sending and receiving messages as defined in that
protocol.

Elements
Realizes

The protocol role realized by this port on behalf of the component.

UML

A CCA ProtocolPort ismodeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "ComponentSpecification «profile» Package", heading "Protocol Port".

I11a-18 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.4.2.4 Flow Port
Extends

Port

Owned By

Process Component
Semantics

A Flow Port is a process component port which realizes a data flow in our out of the
port on behalf of the component.

Elements

type

The type of information sent or received by this port. If not set the port may send or
receive any type of information, which is useful for generic components .

typeExp

The type of information sent or received by this port as determined by a
configurable property. The expression must return avalid type name. Thisis used
to build generic components that may have the type of their ports configured. If
type and typeExp are both set then the property expression must return the name of
a subtype of type.

direction

The port may send or receive information of the appropriate type. If information is
sent out, direction hasavalue of “sends’. If information is received, direction has
avalue of “receives’.

UML

A CCA FowPort ismodeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "ComponentSpecification «profile» Package", heading "FlowPort".

3.4.2.5 Property Definition
Extends

None

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-19

ad/2001-02-19 Part Illa

Owned By

Process Component
Semantics

Since components are designed for reuse in a variety of circumstances they may require
configuration when used. Property definitions provide a way do specify the
configurable properties of a component including the name, type and default value of
each. When the component is used in a composition the property can be set,
speciadizing it for each use. Specific implementation technologies may also allow
runtime or deployment time configuration of properties.

Elements
component
Component for which thisis s a property.
type

Type of information in the property.

constrains

Flow ports for which the property configures their type. If the cardinality of
“constrains’ is greater than zero, the property must return a type name.

name
Name of the property.
initial
Expression returning the default value of the property.

locked

If locked is true, the value may not be change in uses of the component.

Constraints

If the cardinality of “constrains’ is greater than zero, the property must return atype
name.

I11a-20 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

UML

A CCA PropertyDefinition ismodeled in UML as a Stereotype, named
"PropertyDEfinition", of Foundation::Core::Attribute. See detailsin section 5 "UML

Profile Specification”, subsection "ComponentSpecification «profile» Package",
heading "PropertyDefinition".

3.5 Protocol Specification

A protocol is a choreography of interactions between two protocol roles. Components
realize a specific protocol role using a protocol port.

3.5.1 Conceptual Meta-Model

Choreography
(from Choreography)
Efiname : String

' } ~Ja protocol is a
L Protocol Choreography
- | of interactions

1 +uses between roles
1 ,+protoc0|
RequestReplyProtocol ‘
_toles 2
___ProtocolRole |
E8name : String | /
A single EHinitiator : Boolean
message or

message/reply
with no nested
Protocol Roles

+initiator ’ 1 1 +responder

+initiates | n N

+responds
Interaction |~
Both roles must L +usedBy| n :
be nest SubProtocal ProtocolMessage *type Composite Data
i ubProtoco =
colorespondlng EEpostCondition - Status 1 1 (from Document Model)
roles
n
i 0.1 .
+replies +isReplyTo

Figure 3: Protocol Conceptual Meta-Model

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-21

ad/2001-02-19 Part Illa

3.5.1.1 Summary

A protocol defines a conversation between two parties, each of which is represented by a
Protocol Role. One protocol roleistheinitiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual interactions may
by initiated by either party.

Within the protocol, one of the protocol roles sends a Protocol M essage which may or
may not have direct replies. While multiple kinds of replies are allowed, only one may be
used as the reply for any particular message instance.

A protocol may also utilize Sub Protocols. This allows one protocol to use another (or
multiple others). For example, a sale protocol may use order, invoice and payment
protocols.

A Request Reply Protocol is aconstrained form of protocol patterned after the ebXml
“Business Transaction”. Itsintent isto model a single message and reply as areusable

element. A Choreography is not required since it is pre-defined by theinitiation and reply
pattern — similar to an asynchronous method call.

3.5.2 Model Elements
3.5.2.1 Protocol
Extends

Choreography (Indicating that a Choreography of interactions (messages and sub-
protocols) ay be specified)

Owned By
Package
Semantics

A protocol specifies two protocol roles which interact using messages and sub-
protocols. The protocol specifies all the potential interactions and the choreography of
those interactions.

Elements
roles

The two protocol roles participating in the protocol.

usedBy

The set of SubProtocols which use this protocol role as a sub-protocol.

Illa-22 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Constraints

The initiating role must initiate the first message.

UML

A CCA Protocol ismodeled in UML as a Stereotype, with the same name, of Model
Management::Subsystem. See detailsin section 5 "UML Profile Specification”,
subsection "Protocol «profile» Package", heading "Protocol”.

3.5.2.2 Protocol Role
Extends

None

Owned By
Protocol
Semantics

A protocol role represents one “end” of atwo-way conversation. Each role (the
initiator and the responder) may send and receive messages as part of the conversation.

A protocol roleisrealized by a protocol port, which enables a component to participate
in the conversation with another component. The same protocol role may be realized
by multiple protocol ports, even on the same component.

Elements

protocol
The protocol for which thisisarole.
initiates
The set of interactions (messages and sub-protocols) initiated by thisrole.

responds

The set of interactions (messages and sub-protocols) received by thisrole.

name

The name of therole.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-23

ad/2001-02-19 Part Illa
initiator
The role which initiates the first interaction, the “client”.
UML

A CCA ProtocolRoleis modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "Protocol «profile» Package", heading "ProtocolRole".

3.5.2.3 Interaction
Extends

Choreographed (indicating that interactions can be choreographed by the protocol).

Owned By
Protocol Role
Semantics

Interaction is an abstract class representing a portion of a conversation between two
protocol roles which are the “initiator” and “responder”. The interaction may be
Choreographed by the Protocols Choreography.

Elements

Initiator

Theroleinitiating the conversation fragment, |.E. seining the initial message.

Responder

The role responding to the conversations fragment, |.E. receiving the message.

Constraints

Theinitiator and responder are both owned by the same protocol.

UML

A CCA Interaction is abstract. Only the concrete specializations of Interaction
correspond to UML Stereotypes.

Illa-24 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.5.2.4 ProtocolMessage

Extends

Interaction

Owned By

ProtocolRole

Semantics

The specification that a message of a given type can be sent between the initiator and
the responder roles.

Elements

Type

The type of information carried by the protocol message.

Replies

The list of messages which are potential replies to this message

IsReplyTo

The message, if any, that thisisareply to.

PostCondition

The success or failure condition implied by the message.

Constraints

A reply cannot have replies.

UML

A CCA ProtocolMessage is modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::Common Behavior::Reception, referencing a Behaviora
Elements::Common Behavior::Signal, with an Foundation::Core::Attribute of type
Class stereotyped as CompositeData, or a DataType or a User defined DataType or an
Enumeration. See detailsin section 5 "UML Profile Specification", subsection
"Protocol «profile» Package", heading "Protocol M essage”.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-25

ad/2001-02-19 Part Illa

3.5.25 SubProtocol

Extends

Interaction

Owned By

ProtocolRole

Semantics

A protocol may invoke sub-protocols to encapsulate and re-use interaction patterns.
For example, a“negotiation” protocol may use an “offer” protocol. To use a protocol,
each protocol rolein the “using” protocol must specify the protocolsit isinitiating by
using a SubProtocol.

For each sub-protocol to be used, specify a SubProtocol with the “uses’ as the protocol
being used.

Specifying the SubProtocol maps the protocol role as follows;

?? Theinitiator of the SubProtocol uses the Protocol Role of the “uses’ protocol
with “initiator” true.

?? Thereponder of the SubProtocol uses the ProtocolRole of the “uses’ protocol
with initiator false.

Elements
Uses

The protocol role being used by the protocol role owning the SubProtocol.

UML

A CCA SubProtocol is modeled in UML through a Foundation::Core::Generalization,
with the parent being the initiator protocol, and the child the used Protocol. See details
in section 5 "UML Profile Specification”, subsection " About Protocol, Port and
Component (re) Use", heading " Protocol and SubProtocol ".

3.5.2.6 Request Reply Protocol

Extends

Protocol

I1a-26 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Owned By

Package
Semantics

A very common interaction is “request/reply”. A Request Reply Protocol isa
specidization of protocol to make specifying this pattern easier. The Request Reply
Protocol makes the following constraints on a protocol:

?? Therewill be only messages, no SubProtocaols.

?? Therewill be oneinitial message, all other messages will be repliesto that
message.

?? Only one of the replies will actually be used for any instance of the initiating
message.

?? The Choreography isfixed to the initial message transitioning to the
responding messages, this Choreography can not be re-specified.

Request Reply Protocol is patterned after the ebXML “ Business Transaction” and is
frequently only used as a sub-protocol.

Elements
None

Constraints

See above

UML

A CCA RequestReplyProtocol is modeled in UML in the same way as a CCA Protocol.
See detailsin section 5 "UML Profile Specification”, subsection "Protocol «profile»
Package", heading "RequestReplyProtocol ™.

3.6 Component Realization

Process components are abstract, they have no specification of implementation. A
components implementation may be specifies as primitive or as a composition of other
components. A community shows how a set of components works together for a business
purpose.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ia-27

ad/2001-02-19 Part Illa

3.6.

1 Conceptual Meta-Model

Package

(from Model Management)

Composition
(from Composition)

A

Process Component 1
(from Component Specification) @—————
+component

Community
Process

<<control>> <<control>>
Composed Component Primitive Component
BflimplementationType : String
’ BlimplementationLocation : String
+owner
+represents +ports n
ConnectionRole = <<boundary>>
from Composition}, a Port o
(from Com ponent Specification)
4\—
\
+proxies n ‘
<<boundary>>
Port Proxy

(from Composition)

Figure 4: ComponentRealization Conceptual Meta-Model

I11a-28

3.6.1.1 Summary

Process components specify the abstract, external contract of the component. Such a
component isrealized as either a Primitive Component or Composed Component. A

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

primitive component is defined in amodel or language outside of the scope of CCA. A
Composed Component is defined by a CCA composition.

A composition may also be used to define a Community Process, which shows how
members of a community collaborate within a process.

Abstract and Concrete components

This model of abstract and concrete type works exactly like abstract Vs. concrete classes in
C++ & Java. An abstract classisincomplete while a concrete class is fully defined. A
concrete component is "real” and can be asked to do work. Note that thereis NO WAY do
define the "inside" of a* Process Component”, so it must be abstract & "open”. "Abstract”
process components can be created - these have no "insides" specified. A primitive
component is not abstract in that it assumes that itsinsides are defined elsewhere (1.E. in
Java) - but till defined. A composite component has its insides defined by composition.
And, for any particular concrete composed component there is exactly one such
composition.

We want to be able to have alternatives defined for any abstract component. Alternatives
come via a choice of a concrete component - compositions & primitive components are
alternatives and could be aternatives to the same abstract component. Inheritance
supports this exactly the way it doesin Javaor C++. So "alternatives’ are defined by
making alternative components that satisfy the same contract & are therefor subtypes of
the abstract "contract” of the process component. These alternative components may use
composition or may be primitives and there can be any number of them defined at any
time. Since some components have only one reasonable realization, it is possible to define
the “inside” and “outside’ in “one shot” using a primitive or composed component.

Example:
?? ProcessComponent: "CalcualePrice" defines ports and choreography.

?? ComposedComponent: CaluatePriceUsingOtherComponentsl is subtype of
"CalculatePrice"

?? ComposedComponent: CaluatePriceUsingOtherComponents?2 is subtype of
"CalculatePrice"

?? PrimitiveComponent” Cal cualtePriceUsingExternal Program is subtype of
"CalculatePrice"

?? ComposedComponent: OrderProcessor Uses "CalcualtePrice” for a
"ComponentUsage" called "pricelt”

?? Atruntime atrader is called and binds one of the "Cal culatePriceUsing..."
componentsto "pricelt”. It knowsthat thisisvalid because the
"CalculatePriceUsing..." component is a subtype of (substitutable for)
CalcualePrice

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-29

ad/2001-02-19 Part Illa

3.6.2 Model Elements

3.6.2.1 Primitive Component

Extends

Process Component

Owned By

Package
Semantics
A primitive component specifies a concrete component implemented using capabilities
outside of the scope of CCA — A wrapped legacy application, Java, C++ Etc.
Primitive component inherits from Process Component, allowing primitive components

to define their own “contract” or to inherit a contract from an abstract process
component.

Attributes are provided for the type and location of the external implementation, but
CCA places no restrictions or specific semantics on these attributes. A particular
implementation technology may use them as required.

Elements
ImplementationType

An attribute that is intended to be meaningful to the implementation mapping of
CCA to specify the kind of primitive component, E.G. “Java’ or “ COM”.

ImplementationL ocation

An attribute that is intended to be meaningful to the implementation mapping of
CCA to specify how to locate a primitive component’ s implementation artifacts —
such asaclassfileor DLL.

UML

A CCA PrimitiveComponent is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem. See detailsin section 5 "UML Profile
Specification”, subsection "ComponentRealization «profile» Package”, heading
"PrimitiveComponent”.

111a-30 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.6.2.2 Composed Component

Extends

Process Component and Composition

Owned By

Package
Semantics

A composed component specifies a concrete component using a composition of other
components. The composed component gives CCA its recursive component assembly

capability.

The composition that is part of the composed component allows the use of other
components to be “placed inside” of the composed component, configured and then
“wired together”. Thisisintended to support visua tools and drag-and-drop
component assembly.

The“inside’ of the component can be thought of as a template for a set of component
instances. These instances serve to implement the component type being defined.

The ports on the components “inside” the composition will each expose usage of their
ports. These ports are what can be wired together. For each port on the “outside” of
the component being defined a proxy is created on the “inside” that allows the
component ports on the inside to be wired to these external proxies.

In some cases a composition may use abstract Process Component’ s inside of a
composition. Obviously such a composition is not fully concrete. By the time such a
“partially abstract” composition is used, the abstract process components must be
substituted with concrete components. This may be dome at design time (using
contextual binding) or at runtime (using implementation specific techniques).

The semantics of composition are defined in the “ Composition” package.

Elements

Proxies

For each port on the process component a Port Proxy is created (preferably by the
design tool) for use in the composition. These proxies are used make connections to
the“inside” of these ports.

A port may be seen as extending though the components boundary. On the outside,
external components may connect to the port. On the inside, components are
connected to the proxy for this external port.

Proxies have the inverse interface from the external port. That is, if a ports“sends”
adocument its proxies will receive that document.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-31

ad/2001-02-19 Part Illa

UML

A CCA ComposedComponent is modeled in UML as a Stereotype, with the same
name, of Model Management::Subsystem. See detailsin section 5 "UML Profile
Specification”, subsection "ComponentRealization «profile» Package”, heading
"ComposedComponent”.

3.6.2.3 Community Process

Extends

Composition and Package

Owned By

Package
Semantics

Community processes may be thought of asthe “top level composition” in a CCA
specification, it is a specification of a composition of process components that work
together for some purpose other than specifying another component.

For example, acommunity process could define the usage of a buyer, a seller, afreight
forwarder and two banks for a sale and delivery process.

Note that designs can being done “top down” or as an assembly of existing components
(bottom up). When design is being done top down, it is usually the community process
which comes first and then components specified to fill the roles of that process.

Community processes are also useful for standards bodies to specify the roles and
interactions of a B2B process.

Elements
None

UML

A CCA CommunityProcess is modeled in UML as a Stereotype, with the same name,
of Model Management::Subsystem. See detailsin section 5 "UML Profile
Specification”, subsection "ComponentRealization «profile» Package", heading
"CommunityProcess’.

3.7 Composition

Composition is an abstract capability that is used for composite components and for
community processes. Compositions shows how a set of components can be used for some
purpose.

I1a-32 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.7.1 Conceptual Meta-Model

— +context -
Composition n | ContextualBinding +bindsTo Process Component
1 R
L n (ffam Component Specification)
11 +bindings n 1
1 +context +context
ProtocolMessage |~ ruses 1
(from Protocol)
Mess ageScope
N | +connections
Connection
ntuses i n
SubProtocol +ProtocolScope n n frconnections 1 Hills
(from Protocol)
0..1 <<control>> Choreography
+connects | ,, Component Usage | (from Choreography)
name : Strin : Stri
ConnectionRole & 9 Einame : String
1@ +owner 1@ -+owner
n
+ports " n| +configuration
<<boundary>> <<boundary>> Property Value
Port Proxy Port Usage Efivalue : Expression
+proxies | N n
+represents| 1
+fills
<<boundary>> +owner 1\

Port <<control>>
(from Component Specification) Composed Component

(from Component Realization)

Property Definition
(from Component Specification)

Figure 5: Composition Conceptual Meta-Model

3.7.1.1 Summary

A composition defines how process components work together to achieve some

purpose. That purposeis either to realize alarger process component or describe a
community process.

A composition contains component usages to show how other process components may
be used within the composition. Note that the same process component may be used
multiple times for different purposes. Each time a process component is used, each of
its ports will also be used with a“Port Usage’. A port usage shows the connection
point for each use of that component within the composition. The components used
may be concrete (primitive of composite) or abstract (process component). If the
components used are abstract, a concrete component must be bound to the usage at
some later time (see Contextua Binding).

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-33

ad/2001-02-19 Part Illa

Attached to a component usage is one or more Property Values, configuring the
component with properties that have been defined in property definitions.

A composition also contains a set of “connections’. A connection connects compatible
ports on components together. Anything sent out of one side will be received by the
other side. So a connection is aform of event registration.

A connection may also connect to aPort Proxy. A port proxy is used when the
composition realizes a process component and provides a connection point for the
external ports of the process component being defined. Each port proxy represents a
wiring point on the “inside” for a port on the “outside” of the component being
composed.

A connection may connect a port that implements only parts of a particular protocol,
such as a flow port being connected to one message in a protocol. This enables
components at different levels of granularity to be connected. When this occurs the
connection may have to be scoped using M essage Scope, to select a particular message
when the connection isto aflow port. Or, The connection may be constrained by a
Sub-protocol using Protocol Scope.

A composition may use (uses relation) an abstract Process Component as well as
concrete primitive or composite components. A Contextual Binding allows realized
components to be substituted for abstract components when a composition is used.
This may be done in the design or at runtime. When the substitution is done in the

design a contextua binding is used. The mechanisms for runtime substitution are not
defined in CCA.

When a Choreography is defined for a composition, it defines the sequencing of each
component usage as a series of steps with transitions between these steps, forming a
state machine.

3.7.2 Model Elements

3.7.2.1 Composition

Extends

Choreography (Indicating that Component Usage and Connection Roles can be
choreographed).

Owned By
Package (as a Community Process or Composed Component)
Semantics

Composition is an abstract capability that is inherited by the two things that can be
composed — Composed Components and Community Processes. Compositions describe
how instances of process components are configured, connected and choreographed to
implement the composed component or community process.

Illa-34 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Elements
uses

The set of component usage' s for the composition, this set may be considered as a
template for component instances which will realize the composition.

connections

The set of connections (or wires) between port instances or port proxies. A
connection registers each port as an event listener for the other, connecting the
message flows between instances of components used by the composition.

bindings

The set of “ ContextuaBindings’ for the composition, where the composition is the
context for the substitution of concrete components for abstract components.

UML

A CCA Composition ismodeled in UML as a Stereotype, with the same name, of
Model Management::Subsystem. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package", heading "Composition".

3.7.2.2 Component Usage

Extends

Choreographed (Indicating that process component may be choreographed by the
compositions choreography).

Owned By

Composition
Semantics

A composition uses other components to implement the propose of the composition (a
community process or composed component), “ Component Usage” represents such a

use of acomponent. The “uses’ relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as atemplate of component instances. Each
component instance will have a* Component Usage’ to say what kind of component it
is, what its property values are and how it is connected to other components. A
component usage will cause a component instance to be created at runtime.

Each use of a component will carry with it a set of “port usage” which will be the
connection points to other components.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-35

ad/2001-02-19 Part Illa

Elements
Name

The name of the usage. By default thiswill start with the name of the “uses’
process component with some suffix to make it unique.

context

The composition which owns the component usage.

Uses

The process component to be used (which includes the subtypes of process
component: primitive and composed component).

Ports

The port usage’ s— one for each port on the “uses’ process component. These
should be created automatically by the design tool.

Configuration

Property values to configure the component based on its property definitions. Each
value will set avalue of the component instance created to implement the
composition.

Constraints

If “uses’ is an abstract Process component or a composed component using abstract
process components a concrete component must be bound to the component usage prior
to execution.

There must be a port usage for each port defined on the process component.

UML

A CCA ComponentUsage is modeled in UML as a Stereotype, with the same name, of
Model Management::Subsystem, and a Stereotype of Foundation::Core::Class named
"PropertyHolder". See detailsin section 5 "UML Profile Specification™", subsection
"Composition «profile» Package", heading "ComponentUsage”, and subsection
"Common «profile» Package", heading "PropertyHolder".

3.7.2.3 Property Value
Extends

None

I1a-36 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Owned By

Component Usage
Semantics

To be useful in avariety of conditions, component may have configuration properties —
which are defined by a “property Definition”. When the component isused in a

“ Component Usage” those properties may be set using a* Property Value’. These
values will be used to construct a component instance.

A property value should be included whenever the default property value is not correct
in the given context.

Elements

Owner

The component usage to which the property value applies.

Fills

The property definition for the value.

value

An expression returning the property value. Property expressions may only
reference constant values and properties of other components.

Constraints

The type returned by the property value expression must be compatible with the type
defined by the property definition.

The property value must fill a property definition of the component being used.

UML

A CCA PropertyVaueis modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Attribute. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package", heading "PropoertValue".

3.7.2.4 Port Usage
Extends

ConnectionRole

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-37

ad/2001-02-19 Part Illa

Owned By

Component Usage
Semantics

For each component usage there will be exactly one “ Port Usage’ for each port defined
for the component being used. These will normally be created by the design tool.

The Port Usage provides a*“ connection point” for components within the composition
and expose the realized protocols or data flows within the composition.

The “process Component” / * Port” pattern which defines the components external
interface is essentially replicated in the * Component Usage” / “ Port Usage” part of the
composition. Each time a component is used, each of its portsis used as well.

Elements
Owner

The component usage for which thisis a port usage.

Constraints

For each component usage there will be exactly one “ Port Usage’ for each port defined
for the component being used.

UML

A CCA PortUsageismodeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package', heading "PortUsage".

3.7.2.5 Port Proxy

Extends

Connection Role

Owned By

Composed Component

I11a-38 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Semantics

When a composition is being used to define the insides of a composed component there
must be away to connect to the ports on the “outside” of the component being defined.
Port Proxy provides this capability by making a“ Connection Role” within the
composition for connecting to these external ports. Port proxies should be created
automatically by the design tool.

Ports can be thought of as extending through the component being defined with an
“external” and an “internal” connection point. The port proxy isthisinterna wiring
point. Assuch it has aprotocol which isthe inverse of the “external” ports protocol. 1f

the external ports sends a message, the port proxy will receive that message and
forward it on to the internal components connect to the port proxy.

Elements

Owner

The composed component being defined and owning the port being represented (see
“represents’ in “ ConnectionRol€”).

Constraints

For each composed component there shall be exactly one port proxy for each port
defined on the composed component.

If the port proxy represents a flow port, the proxy shall have the inverse direction of the
flow port.

If the port proxy represents a protocol port, the protocol role of the port proxy shall be
the inverse protocol role of the represented port.

UML

A CCA PortProxy ismodeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package", heading "PortProxy".

3.7.2.6 Connection Role
Extends

None

Owned By

Ownership is managed by concrete subtypes: Port Usage and Port Proxy.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-39

ad/2001-02-19 Part Illa
Semantics

ConnectionRole is an abstract element which represents something that can be
connected within a composition. Thiswill either be a“ Port Usage” or “ Port Proxy” . In
either case the connection role will reference a*“port” that is the basis for the
connection point.

A ConnectionRoles may be an event consumer, event producer or both and may be
connected by any number of connections. Each connection registers instances of the
underlying port as event producer and/or consumer of the other, thus forwarding the
messages between components instances.

Elements

represents

The port which the connection role represents. The connection role is bound by the
constraints of the associated port.

connections

The connections attached to (or using) the connection role.

UML

A CCA ConnectionRole is abstract. Only the concrete specializations of
ConnectionRole correspond to UML Stereotypes.

3.7.2.7 Connection
Extends

None

Owned By

Composition
Semantics

A connection connects the instances of two ports within a composition. Each port can
produce and/or consume message events. The connection registers each port instance
as alistener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages, it
doesn’t not know “ who” will be on the other side. The composition shows how an

I11a-40 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

instance of a component will be used and thus how it will be connected to other
components within that context.

A connection connects exactly two Connection Roles (Port usage or Port Proxy). |If
connecting to Port Usage, it will be connecting to the use of a component within a
composition. If connecting to a Port Proxy it will be connecting to the ports on the
“outside’ of the component being composed.

A connection may be thought of as a cable between two plugs. The plugs are the
ConnectionRoles and the connection the cable.

Since a connection may connect a complex protocol to a simpler one or even aflow
port, it may be necessary to scope the connection. Setting “ Protocol Scope” to a specific
Sub Protocol selects a part of that protocol. Setting MessageScope to a particular
message scopes the connection to only connect that message. Setting these relationsis
only required when connecting ports of different granularities. 1n many cases tools
may be able to set these based on the type of the two ports.

Elements

Context

The composition which owns the connection. Note that the connection is not
owned by either of the things connected, which are ignorant of how they are used.
The composition owns the component usage and how they are connected within that
context.

Connects

The two ConnectionRoles (Port Proxy or Port Usage) being connected.
M essageScope
Restricts the connection to the related connection.

Protocol Scope

Restricts the connection to the related sub protocol.

Constraints

Each connection role must be owned by the same composition as the connection.

UML

A CCA Connection ismodeled in UML as a Stereotype, with the same name, of
Foundation::Core::Association. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package", heading "Connection”.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-41

ad/2001-02-19 Part Illa

3.7.2.8 Contextual Binding
Extends

None

Owned By

Composition
Semantics

A composition is able to use abstract process components in compositions —we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “ Pricing” component may use an abstract component
“PriceFormula’. In our “International Sales’” composition we may want to say that
“ PriceFormula’ uses “International Pricing”.

Contextual Binding allows the substitution of a more concrete component for a
compatible abstract component when an abstract composed component isused. So
within the composition that uses the abstract composed component (International

Sales) we say the use of a particular Component (use of PriceFormula) will be bound to
a concrete component (InternationalPricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these
are out of scope for CCA. Some specialization of CCA may subtype

Contextua Binding and apply selection formulato the binding, asis common in
workflow systems.

Elements

Context

The composition which is using the abstract composed component and wants to
bind a more specific process component for an abstract one. The owner of the
contextual binding.

Fills

The use of a component in which the substitution to a concrete component should
take place. This component usage does not have to be within the same composition
as the contextua binding, it may be anywhere the component usage occurs within
the scope of the composition owning the binding.

Ila-42 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

BindsTo

The concrete component which will be bound to the component usage.

Constraints

The process component related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills’.

UML

A CCA ContextualBinding is modeled in UML as a Stereotype, with the same name,
of Foundation::Core::Binding. See detailsin section 5 "UML Profile Specification”,
subsection "Composition «profile» Package", heading " Contextual Binding".

3.8 Choreography

Choreography allows the ordering of various actions in a system to be specified as a set of
stepsin a process and transitions between these steps. The base model of Choreography is
that of an activity graph .

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-43

ad/2001-02-19 Part Illa

3.8.1 Conceptual Meta-Model

<<Enumeration>> Choreography A Choreography uses
Status Efiname : string transitions to order
ﬂpSuccess steps of choreographed
EliTimeoutFailure ¢l ¢ actions.
ElTechnicalFailure +context +context
EEBusinessFailure
BEAnyFailure
ESAny
+states n
n 1 +incoming +transitions
State +target n Transition
E&name : String| +source nn | E8Precondition : Status
1 +outgoing|
‘ |
Join
+sub Step TerminateSuccess TerminateFailure EdAny : Boolean
| 1
n
+scope Start Split
1
StepScope
SubStep MessageStep ProtocolStep ‘ ‘ ‘
1
———__ .| SubProtocol <<boundary>> <<boundary>>
+subProtocol (from Protocol) Port Usage Port
(from Composition) | | (from Component Specification)
+message
1
ProtocolMessage
(from Protocol) 0.1

EHpostCondition : Status

+guard

Figure 6: Choreography Conceptual Meta-Model

3.8.1.1 Summary

A Choreography uses transitions to order steps of choreographed actions, as a state
machine. Each step in the choreography must refer to a Message or a SubProtocol.
Messages and SubProtocols take on or begin some kind of action or activity within the
context of the choreography.

Choreography is an abstract capability that is inherited by things that can be
choreographed, such as: Process Componentsand Protocols.

Within any choreography there must be some place to start and placesto end, either

with a Terminate Success or a Terminate Failure. Concurrent steps are defined by
using a split with transitions to each concurrent step and a join when the concurrent

steps come back together.

The ordering of stepsis controlled by transitions between states (step being a kind of

state). Transitions specify flow of control that will occur if the conditions
(Precondition and Guard) are met.

Illa-44 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

A Sub Action allows choreography of interactions within protocols where interactions
are also defined as steps.

Each action will have atermination status of success or one of severa kinds of failure.

Choreography may be used at multiple levels;

?? A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. Thisis much like a sequence diagram.

?? A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of ports and is part of the external contract of the component.

The use of choreography at all of these levelsis not always required, as sufficient
specification may be determined from the other layers.

3.8.2 Model Elements
3.8.2.1 Choreography
Extends

None (Abstract Capability)

Owned By
Ownership is based on concrete model element which inherits from Choreography.
Semantics

Choreography is an activity graph owning a set of states and transitions and specifying
an ordering of these states based on the transitions. The states that perform actions are
“Steps’ of the process being choreographed.

Elements

States

The set of states being choreographed and, indirectly (through “step”) the set of
actions being choreographed.

Transtions

The transitions which order the states and steps.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-45

ad/2001-02-19 Part Illa

UML

A CCA Choreography is abstract.

CCA Choreography, is modeled in UML as an ActivityGraph, aggregated in the
context of the UML stereotype for Protocol or ProcessComponent. See "UML Profile
Specification”, subsection "Choreography «profile» Package", heading
"Choreography".

3.8.2.2 State

Extends

None

Owned By
Choreography
Semantics

State is an abstract element that specifies something that can be the source and/or
target of atransition and thus ordered within the choreographed process. The states
that do “real work” are steps.

Elements

Context

The owner of the state.

Name

The name of the state

Incomming

The set of all possible transitions into this state.

Outgoing

The set of all possible transitions out of this state.

Constraints

Incoming and outgoing transitions will be within the same choreography.

I1a-46 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

UML

A CCA Stateis abstract. Only the concrete speciaizations of State correspond to UML
Stereotypes.

The UML modeler may use UML Behaviora Elements::State Machines::State for the
specification of StateMachines and ActivityGraphs.

3.8.2.3 Transition
Extends

None

Owned By

Choreography

Semantics

States represent a condition of some process. Transitions represent the movement from
one state to another, or aflow of control. The transitions may have conditions which
control if itisor isnot alegal transition in agiven circumstance, thisis expressed
using the PostCondition and Guard.

If there are multiple legal transitions out of a state, it is up to the implementation of
that state to pick the actual transition from the set of potential transitions..

Elements

Context

The choreography owning the transition.

Source

The state from which the transition occurs.

Target

The state to which the transition occurs.

PreCondition

The termination status of the prior state which must be true for the transition to take
place (belega). Default: Any

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-47

ad/2001-02-19 Part Illa

Guard

The termination action of the prior step which must have happened for the
transition to take place (be legal).

UML

A CCA Transition ismodeled in UML as a Stereotype named
"ChoreographyTransition”, of Behavioral Elements::State Machines:: Transition. See
detailsin section 5 "UML Profile Specification”, subsection "Choreography «profile»
Package", heading "ChoreographyTransition".

3.8.2.4 Step

Extends

Sate

Owned By
Choreography
Semantics

A step is a state in a choreographed process that does real work by performing some
action.

There are three kinds of Steps : MessageStep, Protocol Step and SubStep.

Elements
scope

The Port, PortUsage or SubProtocol that defines the context for the Step.

UML

A CCA Stepisabstract and not directly modeled in UML. Its specializations are
modeled in UML as specified below.

3.8.2.5 MessageStep

Extends

step

I11a-48 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Owned By
Choreography
Semantics
A MessageStep is a Step for sending or receiving a Protocol M essage.

Elements
message

The Protocol M essage to be sent or received.

UML

A CCA MessageStep is modeled in UML as a Stereotype, named "M essageStep™ of
Behavioral Elements::State Machines:: Transition. See detailsin section 5 "UML
Profile Specification”, subsection "Choreography «profile» Package", heading
"MessageStep".

3.8.2.6 ProtocolStep
Extends

State

Owned By
Choreography
Semantics
A SubProtocol Step is a step for launching the activity of awhole SubProtocol .

Elements
subProtocol

The SubProtocol to activate in the Protocol Step.

UML

A CCA ProtocolStep is modeled in UML as a Stereotype, named " Protocol Step™ of
"Step”, of Behavioral Elements::Activity Graph::ActionState. See detailsin section 5
"UML Profile Specification”, subsection "Choreography «profile» Package", headings
"Protocol Step”.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-49

ad/2001-02-19 Part Illa

I11a-50

3.8.2.7 SubStep
Extends

Sate
Owned By
Choreography
Semantics

A SubStep is astep in a choreographed process, inserted to reference and drill down
into an specific Port, PortUsage or SubProtocol, such that inner MessageStep or
SubProtocol Step unequivocaly refer to the desired Message or SubProtocol .

A SubStep is used within the context of another step, such as a message within a
protocol. SubStep enables the choreography of fine-grain actions.

Elements

sub

The nested Step to execute within the scope of the SubStep.

UML

A CCA SubStep ismodeled in UML as a Stereotype, named " SubStep” of Behavioral
Elements::Activity Graph::SubactivityState. See detailsin section 5 "UML Profile
Specification", subsection "Choreography «profile» Package", headings " SubStep".

3.8.2.8 Start

Extends

State

Owned By

Choreography
Semantics

Start is an implicitly created state that represents a choreographed element that is ready
to start and will start based on the transitions from the start state.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Elements
None

UML

A CCA Startismodeled in UML as a Stereotype, with the same name, of Behavioral
Elements::State Machines::Pseudostate, of kind #initial. See detailsin section 5 "UML
Profile Specification”, subsection "Choreography «profile» Package", heading "Start".

3.8.2.9 TerminateSuccess
Extends

State

Owned By
Choreography
Semantics

The TerminateSuccess state is an implicitly generated state that is the normal,
successful completion of a choreography. When TerminateSuccess is reached the
action of the choreographed element is done.

Elements
None

UML

A CCA TerminateSuccess is modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::State Machines::Final State. See detailsin section 5 "UML Profile
Specification”, subsection "Choreography «profile» Package", heading
"TerminateSuccess'.

3.8.2.10 TerminateFailure
Extends

State

Owned By

Choreography

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-51

ad/2001-02-19 Part Illa
Semantics

The TerminateFailure state is an implicitly generated state that is transitioned to when
the choreographed element ends in failure. When TerminateFailure is reached the
action of the choreographed element isdone. 1n abusiness sense, failure isindicated
when the business intent of the choreography was not satisfied. E.G. when an order was
not accepted.

Elements
None

UML

A CCA TerminateFailureis modeled in UML as a Stereotype, with the same name, of
Behavioral Elements::State Machines::Final State. See detailsin section 5 "UML Profile
Specification”, subsection "Choreography «profile» Package", heading
"TerminateFailure".

3.8.2.11 Split
Extends

Stete
Owned By
Choreography
Semantics

A split isused to indicate that all legal transitions from the split state will occur. Itis
undefined if these will happen concurrently or in parallel. This may be distinguished
from any other step in which only one transition from any state may occur.

Elements
None
UML

A CCA Splitismodeled in UML as a Stereotype, with the same name, of Behavioral
Elements:: State M achines::Pseudostate, of kind #fork. See detailsin section 5 "UML
Profile Specification”, subsection "Choreography «profile» Package”, heading " Split".

I1a-52 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.8.2.12 Join
Extends

State

Owned By

Choreography
Semantics

A joinisused to combine actions that had been split. If “any” istrue, the first
transition to the join will conclude the spit and all other actions of the split will be
terminated. If any isfalse, al actions of the split must conclude for the join to be
satisfied and transition out.

Elements
Any
Trueif the first transition to the join terminates the join. (Default: false)

UML

A CCA Joinismodeled in UML as a Stereotype, with the same name, of Behavioral
Elements:: State M achines::Pseudostate, of kind #oin. See detailsin section 5 "UML
Profile Specification”, subsection "Choreography «profile» Package", heading "Join".

3.9 Document Model

The document modedl defines the information that can be transferred between and
manipulated by process components.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-53

ad/2001-02-19 Part Illa

3.9.1 Conceptual Meta-Model

Data Invarient
i 1 Data Element +type
Efexpression : String +eonstraints
EfonCommit : Boolean | n +constrainedElement 1

n

Attribute
+supertype 1 EfbyVvalue : Boolean
Data Emumeration o Composite Data +feature Efrequired : Boolean

Type -1 rowner n ESmany : Boolean

. Efinitialvalue : Expression
+emumeration N | +subtypes
o +values
+initial \[/ 1 n

Enumeration
Value

E¥name : String

Figure 7: DocumentModel Conceptual Meta-Model

3.9.1.1 Summary

A data element represents a type of data which may either be primitive or composite.
Composite data has named attributes which reference other types. Any type may have
aData Invariant expression.

Attributes may be byValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked
asrequired and/or many to indicate cardinality. Primitive data types define anything
from integers to movies — these types are defined outside of CCA. An enumeration
defines a type with afixed set of values

3.9.2 Model Elements

3.9.2.1 Data Element
Extends

None

Owned By

Package

Illa-54 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

Data Element is the abstract supertype of all datatypes. It defines some kind of
information.

Elements
Consraints

The set of rulesthat are applied to the data type.

UML

A CCA DataElement is abstract. Only some of the concrete specializations of
DataElement correspond to UML Stereotypes.

3.9.2.2 Data Type
Extends

Data Element

Owned By
Package
Semantics

A primitive data type, such as an integer, string, picture, movie...
Primitive data types have their structure and semantics defined outside of CCA.

Elements
none
UML

Corresponds to standard and User Defined UML DataTypes.

3.9.2.3 Enumeration
Extends

Data Element

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-55

ad/2001-02-19 Part Illa

Owned By

Package
Semantics

An enumeration defines a type that may have afixed set of values.
Elements

Values

The set of values the enumeration may have.

Initial

Theinitial, or default, value of the enumeration.

Constraints

The names of al enumeration values must be unique within the enumeration.

UML

Corresponds to User defined enumeration stereotypes of UML DataType.

3.9.2.4 Enumeration Value

Extends

None

Owned By

Enumeration
Semantics
A possible value of an enumeration.

UML

The values of User defined enumeration stereotypes of UML DataType.

I11a-56 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Elements

Enumeration

The owning enumeration.

Constraints

3.9.2.5 Composite Data
Extends

Data Element

Owned By
Package
Semantics
A data type composed of other typesin the form of attributes.

Elements

Feature

The attributes which form the composite.

Supertype

A type from which thistypeis specialized. The composite will include al attributes
of al supertypes as attributes of itself.

Subtypes

The types derived from this type.

Constraints

The names of all attributes must be unique within the scope of the composite.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1a-57

ad/2001-02-19 Part Illa

UML

A CCA CompositeDatais modeled in UML as a Stereotype, with the same name, of
Foundation::Core::Class. See detailsin section 5 "UML Profile Specification”,
subsection "DocumentModel «profile» Package”, heading "CompositeData’".

3.9.2.6 Attribute
Extends

None

Owned By

Composite Data
Semantics

Defines one “dlot” of acomposite type that may be filled by a data element of “type”.
Elements

Owner

The composite of which thisis an attribute.
Type

The type of information which the attribute may hold. Type may aso befilled by a
subtype.

ByValue

Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

Required

Indicates that the attribute slot must have a value for the composite to be valid.

Many

Indicates that there may be multiple occurrences of values. These values are always
ordered.

I11a-58 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

InitialValue

An expression returning the initial value of the attribtue.

UML

A CCA Attribute corresponds to the UML model element of same name.
3.9.2.7 Data Invariant
Extends

None

Owned By
Package
Semantics
A constraint on the legal values of a data element.

Elements

ConstrainedElement

The data element that will be constrained.
Expresson
The expression which must return true for the data element to be valid.

OnCommit (Default: False)

True indicates that the constraint only appliesto afully formed data el ement, not to
one under construction.

UML

A CCA Datalnvariant corresponds to a UML Foundation::Core::Constraint.

3.10 Model Management

Model management defines how CCA models are structured and organized. It directly
maps to its UML counterparts and is only included as an ownership anchor for the other
elements.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-59

ad/2001-02-19 Part Illa

3.10.1 Conceptual Meta-Model

Package Content
BHname : String

n +modelElement

+ownedElement] 1
/
1
+elementimport
+namespace ‘ n
Package Data Element Element Import
(from Document Model)
Protocol Community Process

Process Component

(from Protocol) (from Component Realization)

(from Component Specification)

.Qﬂgranularity : String

.Qﬂpersistent : Boolean

Figure 8: ModelManagement Conceptual Meta-Model

I11a-60

3.10.1.1 Summary

A package defines alogical hierarchy of reusable model elements. Elements that may
be defined in a package are Package Content and may be Process Components,
Protocols, Data Elements, Community Processes and other packages. A Imported
Element defines a visibility of a package content in a package that is not its owner..
Shortcuts are useful to organize reusable elements from different perspectives.

Note that process components are aso packages, allowing elements which are specific
to that component to be defined within the scope of that component.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

3.10.2 Model Elements
3.10.2.1 Package
Extends

None

Owned By
Package or global scope
Semantics

Defines a structural container for “top level” model elements that may be referenced by
name for other model elements.

Elements

OwnedElements

The content of the package.

UML

A CCA Package corresponds to the UML model element of same name.

3.10.2.2 Package Content
Extends

None (Abstract Capability)

Owned By

Package
Semantics

An abstract capability that represents an element that may be placed in a package.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-61

ad/2001-02-19 Part Illa

Elements
Name

The unique name of the element within the package

Constraints

Names must be unique.

UML

A CCA PackageContent is abstract. Corresponds to the UML abstract M odel Element.

3.10.2.3 Element Import
Extends

None

Owned By

Package
Semantics
Definesan “ Alias’ for one element within another package.

Elements

M ode Element

The base element to have aliases.

UML

A CCA Elementimport corresponds to the UML model element of same name.

Ila-62 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

3.11

changes on ad/2001-02-19 Part llla

Combined Model Diagram

State +States
(from Choreography)

+contextchoreography

from Choreograph

+4

<<control>>
Primitive Component

(from Component Realization)

<<control>> |
Composed Component ‘
(from Component Realization)

+source

MessageStep
(from Chor

itgoing

Transition
(from Choreography)|

o

+message

+type

Composite Data

(from Document Mod
1

| n
+owner +feature Rl
o) [— — (from Document Model)
1 n

Figure 9: Combined Conceptual Meta-Model

+supertype
n +bindsTo Process Component
Composition ContextualBinding ¢rpmiComponentspecification) Generalization
1
< (from Compositiofigantext +bindinggrom Composition) +subtypes
N %c ponenﬁ_ n
+cont ﬁ-iont t1 +uses
= - +component
! ProtocolStep ;\\ DataManager
U'TTET@??ET‘:’H (flom Data Managefs)
~ +fills n +properties
reography) s I B . 4
<<control>> Property Definition
+C°“‘1?C ons Component Usage (from Component Specification) “
2 < (from Composition) EntityManager
Connection, 1 from Data Managers
(from Compositioh) +ills 0.1 n (gere)
~ +ow! 1 +gwner
+configuration +typeExp
n n |n n
+connec +ports n n
or Property Value
h sshotndary>2 (from Composition)
Port Usage
(from Composition)
tports
N \ n
+connects \
\ <<boundary>>
ConnectionRole \ +represents Port)
(from Conposition) > \ (from Component Specification)
n
; B
| +constrains
<<boundary>>
Port Proxy 0..n
+Protocol$cope -
(from Composition)
0.1 <<boundary>>
1 SubProtocol Protocol Port <<boundary>>
- (from Component Specification) Flow Port
o = (from Protocol) (from Component Specification)
+subProtocol
n n
+usedBy ,{ n
It A
‘\ ZN\ +initiates +initiator 1 +J;eallzes
\ +use; :
N Interaction ProtocolRole
Protocol (from Protocol)|]1- (from Protocol)
+type
(from Protocol) +protocol
respon
‘\ +responds p+r +typg 0.1 1
1 — Data Element
\\ (from Document Model)
+lyp§N 1
MessageSco ‘
0.1
Entity ‘
ProtocolMessage (from Data Managers
(from Protocol)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

I11a-63

ad/2001-02-19 Part Illa

4. Notation

CCA uses UML notation with afew extensions and conventions to make diagrams more
readable and compact for CCA aware tools. The UML mapping (Section 5) shown how
CCA isexpressed in the UML Meta-Model which has standard notation. The following
are additions this base UML notation.

4.1 Process Component Specification Notation

A process component is based on the notation for a subsystem with extensions for ports
and properties. Consider the following diagram template for process component notation.

Component (t)

Receives

Responder Initiator

Property Type Value

Figure 10: ProcessComponent specification notation

?? A process component represents its external contract as a subsystems with the
following addition:

?? The process component type may be represented as an icon in the component name
compartment. “t” above.

?? Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle.. In the above,
“Receaives’, “Sends’, “ Responder” and “Initiator” are al ports. The type of the port is
not represented in the diagram.

?? Flow ports are represented as an arrow going through abox. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have an
arrow pointing into the box. A sender has the background and text color inverted.

?? Protocol ports are boxes extending out of the component. Protocol ports representing
an initiator have the colors of their background and text reversed. In the above,
“Initiator” is aprotocol port of an initiator and “ Responder” is a protocol port that is
not an initiator.

?? Property Definitions s are in a separate compartment listing the property name, type
and default value (if any). The name, type and value are separated by lines. Each
property ison a separate line.

Ila-64 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

4.2

Protocol Notation

changes on ad/2001-02-19 Part llla

Protocol

OrderBT

buy role_Order

g\ﬁz -

sell_role_Order

Failure

Success

‘|OrderC0

nflrmation|<7

Protocol

OrderBT

buy role_Order

*

Success

Failure

sell_role_Order

Figure 11 Protocol Notation (1)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

I11a-65

ad/2001-02-19 Part Illa

Protocol

(with subProtocols)

|

Protocol Sales_protocol

ProtocolRole buy_Sales_role sell_Sales_role
(initiator) - ProtocolRole
g Start B —
P buy_role_Quote: QuoteBT S| sell_role_Quote: QuoteBT |-
SubProto¢olRole i SubProtocolRole
(initiator)

TerminateFailur|

e -« >
=©/ ProtocolTransitions With guard J/

Fail@uy_role_shipping: ShippingNoticeBT 4(sell_role_shipping: ShippingNoticeBT

buy_role_Order : OrderBT sell_role_Order : OrderBT

[OrderDenied] [OrderConfirmation]
<o !

"~/

‘SubProtocoIRoIe

J/ (initiator)

Guy_role_Payment: PaymentNoticeBF%Gell_role_Payment: PaymentNoticeB'Q

TerminateSuccesy
Success -

\C

Figure 12: Protocol notation (2)

Protocols are based on UML activity diagrams, consider the following template of a
protocol diagram with Choreography

A protocol uses the standard UML activity diagram notation with the following
conventions;

?? The Protocol Roles are shown as swim lanes. The Initiator is the |eft most swim lane.
The name of the protocol roleis the heading of the swim lane.

?? The protocol is shown in terms of the initiator, using the initiator swim lane. Start
states and hare shown in this swim lane.

?? A Message that is not areturn is shown as asignal

?? A Message return is shown as asignal reception under the message it isareturn for.
?? Sub Protocols are shown as action states.

?? Sub Steps are shown nested within the containing step.

?? Thefail stateis shown asatermina state with the word “fail” in the center.

?? Split is shown as afork

?? Transtions are shown as transitions.

4.3 Composite Component Notation

I11a-66

A composite is shown as a Process Component with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Composite Component
= Sends
Receives
usage1 (U Usage2 (1)
>4 Receives | —— 4 Receives > Sends
p
-
(]
&
124
1%}
()]
Usage4 (t) =
Responder Initiator 4 Message 2

Figure 13: Composite Component notation

?? The ports on the composite component being defined are shown in the same way as
they are on a process component.

?? Theinterior color of flow port arrows are inverted in color to show the port proxy.
“Receives’ and “Sends’ on “ Composite Component” are ports of the composite
components with port proxies on the “inside”.

?? Theinterior portion of a protocol port isinverted in color to show a port proxy.

?? A component usage is shown as a smaller version of a process component inside the
composite component. Note Usage (1..4) are component usages.

?? Port usages are shown in the same fashion as ports, on component usages. The ports
on Usage 1..4 are all port usages.

?? Connectors are shown as lines between port usages or port proxies. All thelinesin the
above are connectors.

?? Property values may be shown on component usages, or may be suppressed.

?? Message Scope & Protocol Scope are shown as annotations on a connection, within a
box. Notethat the “initiator” port on “ Usage 4” isaprotocol. The connectors
containing Message 1 and Message 2 are being scoped to messages within the
initiator’s protocol so that “ Usage 3" may deal with these as data flows.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-67

ad/2001-02-19 Part Illa

4.4 Primitive Component Notation

Component (t)

Receives

Java |

Initiator
com.omg.stuff |

Responder

Property Type Value

Figure 14: PrimitiveComponent notation

A primitive component is shown in the same format as a process component. The
primitive component attributes are shown in the center of the central compartment.

4.5 Community Process Notation

A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

BuySellProcess

Buyer (t) Seller (t)

Figure 15: CommunityProcess notation

In the above example “ BuySellProcess’ is a community process with component usage for
“Buyer” and “Seller” which are connected viatheir “buy” and “sell” ports, respectively.

4.6 Composition Notation

Being an abstract capability, composition has no specific notation. See component
realization.

I11a-68 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

4.7 Choreography Notation

Choreography uses UML activity graph notation.

4.8 Data Model Notation

CCA Data Elements arein the form of aUML class with a*“ wavy bottom” , asisthe
common representation of a document in aflow chart. The attributes of a composite are
shown in the single compartment using standard UML notation.

Document

attribute: type
attribute : type
+composite : type
attribute : type
attribute : type

Figure 16: DataModel notation

Composite attributes may be expanded to show composite detail.

4.9 Model Management Notation

Model Management uses standard UML notation.

4.10 Data Manager Notation

The managed type is shown as a component with the managed type inside of the
component.

Data Manager

Document

attribute: type
attribute : type
[Fcomposite : type N
attribute : type
attribute : type

\/\

Property Type Value

Figure 17: DataManager notation

The embedded document is managed by the data manager.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-69

ad/2001-02-19 Part Illa

Document management ports (Black and white rectangles extending through the data
manager’ s boundary) are not labeled as the are shown connecting to the document.
Document management ports which modify the document are whie while ports that
report changes in the document are black.

I11a-70 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

S. UML Profile Specification

5.1 Introduction

The UML Profile specifies how to use UML to produce specifications compliant with the
Component Collaboration Architecture (CCA).

This document refersto UML as in its specification version 1.4 [UML1.4].

Reference literature about related concepts, outside of OMG standards, may be found in
[OORAM], [CATALYSIS], [ROOM] and [UML-RT].

5.2 Relationship with Conceptual Meta-Model
This section specifies CCA asaUML profile, through a set of stereotypes, tagged values
and constraints. The UML profile is shown in relation to the Conceptual Meta-Model for
CCA, and provides the capability to support CCA by standard UML tools.
Most elements of the CCA Meta-Model directly correspond to UML elements or are
logical subtypes of them. When CCA and UML metamodel elements have the same name
it may be assumed that have the same semantics.

Please refer to previous sections, for a UML independent description of CCA semantics.

5.3 Choice of UML elements

The choice of UML model elements intendsto facilitate the use of standard and existing
UML tools to specify models with the semantic constructs of CCA.

UML Classes and Attributes are used to describe the structured data that comprises the
information payload sent with messages. UML Class is stereotyped for CompositeData.

The profile uses primarily the UML Subsystem, as the unit for both classification and
organization. Subsytem is stereotyped for Protocol, RequestReplyProtocol, FlowProtocol,
ProcessComponent, Composition, ComponentUsage, ComposedComponent,
PrimitiveComponent and CommunityProcess.

UML Classis stereotyped for ProtocolRole, Protocol Port, RequestReplyPort, FlowPort,
PortUsage and PortProxy.

UML Association is stereotyped for Connection.
UML Classis stereotyped for PropertyHolder (a necessary addition to the UML profile).

UML Attribute is stereotyped for PropertyDefinition and PropertyVaue.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-71

ad/2001-02-19 Part Illa

The behaviora element in the CCA profileisthe UML Reception stereotyped as
ProtocolMessage, and associated Signals.

UML Collaborations can be used to provide optiona views of Protocols and Compositions.
UML ActivityGraph and StateM achine elements are used to specify the Choreography of
messages and sub-Protocols in CCA, for Protocols, ProcessComponents and

ComponentUsages.

UML ActivityGraph can be used to provide a high level representation on the
Choreography of whole Compositions.

Standard UML Model Management artifacts, like Model and Package, can be used to
organize CCA models.

A number of convenience abstract Stereotypes have been defined, to serve as common
supertypes and provide containment and inheritance at the more general levels.

54 Profile structure

5.4.1

Ila-72

The UML Profile for the Component Collaboration Architecture is organized in the
following packages :

?? Component Specification — of a collaborative party as a fully encapsulated,
configurable artifact.

?? Protocol - for the specification of the set of messages that can be exchanged between
collaborating parties.

?? Component Realization — specifying the realization of components as a primitive
implementation, or as a composition of other components. To build a community out of
components.

?? Composition — as a network of encapsulated artifacts.

?? Choreography — to specify the valid sequences of messages and activities in a set of
collaborating parties

?? Document Model — that allows the specification of message payload documents.
?? Common - convenience abstract semantic supertypes.

?? Owners — convenience abstract container supertypes.
Packages model

The following is amodel showing the Packages of the Profile, the ones used from the
standard UML Meta-Model, and the dependencies between Packages.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

I

Model Management
(from Logical View)

<<profile>>
CCA

(from Logical View)

<<access>>

1

<<profile>>
Owners

<<access>>

o

AR <<profile>>
\ ComponentRealization

<< >/ \

access> <<access>>

\ <<acccess>>

<<profile>> I .

p o <<profile>> <<profile>>
Composition >

CHRED ComponentSpecification
<<access>>

L B AN e

\ <<access>3 -
/ <<profile>>
\ / DocumentModel T <<profile>> | __ oo <<profile>>
\ / Protocol < access Choreography
<<access>> |<<access>> P
\ / <<access>> o
NEAY Y —
<<actess>>
Core . -<<access>
(from Foundation) /
_-<<access>> <<access>> <<access>>
£ s v
Common Behavior State Machines Activity Graphs
(from Behavioral Elements) <= (from Behavioral Elements) <= (from Behavioral Elements)
<<access>>

Figure 18: Sructure and dependencies of the CCA «profile» Packages

5.5 ComponentSpecification «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-73

ad/2001-02-19 Part Illa

551 Virtual metamodel

<< >>
stereotype aggregates <<stereotype>>
ProtoComponent | ProtoPort
(from Common) (from Common)
A T [aggregates >
indirectly
through
<<stereotype>> PropertyHolder <<stereotype>>
ProcessComponent Port
<<tagDefinition>> granulaity : Granularity <<tagDefinition>> synchronous : Boolean
<<tagDefinition>> persistent : Boolean <<tagDefinition>> transactional : Boolean
<<tagDefinition>> multiple : Boolean
<<stereotype>>
Property <<stereotype>> <<stereotype>>
(from Common) ProtocolPort FlowPort
/
<<enumeration>>
Granularity
Program
Owned
<<stereotype>> Shared
PropertyDefinition

Figure 19: Class Diagram of the Virtual metamodel for ComponentSpecification «profile» Package

5.5.2 Applicable subset

From Model Management
?? Subsystem — stereotyped as ProcessComponent

From Foundation::Core
?? Class — stereotyped as Port, Protocol Port and FlowPort
?? Attribute — stereotyped as PropertyDefinition

5.5.3 Accessed Packages

The ComponentSpecification «profile» Package accesses the Common «profile» Package.

554 Rationale

ProcessComponent is a Stereotype of Subsystem, that may contain Protocol Port and
FlowPort, asits boundary objects.

Ila-74 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

PropertyDefinition is an Attribute used for configuration of the ProcessComponent.
Because a UML Subsystem is constrained and can not contain Attributes, a Class

stereotyped as PropertyHolder has to be introduced, contained in the ProcessComponent,
and actually containing the PropertyDefinition.

5.5.5 «ProcessComponent»

BaseClass Supertype Abstract
Model Management:: Subsystem «ProtoComponent» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Inherits from «ProtoComponent» the capabilities to own :
?? Specializations of «ProtoPort» ; «Protocol Port» and «FlowPort»
?? The utility Class of «PropertyHolder», to indirectly own «PropertyDefinition»

?? «Composition», yet only its specialization «ComposedComponent» will actually
have «Composition».

Tagged Values
name =" granularity"

tagType = Granularity multiplicity =1 tagVaue="Program”
Corresponds to the attribute of the same name in the CCA Conceptua Meta-Model.

name =" persstent”

tagType = Boolean multiplicity =1 tagVaue= FALSE
Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

Standard UML Generalization can be used to produce more specific
ProcessComponent, by specialization of a more generic one. The
ProcessComponent child of the Generalization will inherit the Port of the
Generalization parent ProcessComponent. The child will aso inherit the
PropertyHolder of the parent, and therefore its PropertyDefinition.

Constraints

In compliance to UML visibility and access rules between Packages, the
ProcessComponent must have access to the Protocol containing the ProtocolRole
realized by each Protocol Port in the ProcessComponent.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-75

ad/2001-02-19 Part Illa

5.5.6

Ila-76

For each Protocol with ProtocolRole realized by Protocol Ports of the
ProcessComponent, there must be an access Dependency with the ProcessComponent
as client and the used Protocol as provider.

There is no need to define additional constraintsin CCA. The constraints defined by
UML dready prevent the usage of Protocol Role from Protocol Port of
ProcessComponent, if the ProcessComponent is not client of an «access» Dependency
of which the Protocol is supplier.

«Port»

BaseClass Supertype Abstract
Foundation::Core::Class «ProtoPort» Abstract
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Inherits from «ProtoPort» the capability to contain «Protocol M essage»

Tagged Values
name =" synchronous’

tagType = Boolean multiplicity =1 tagVaue="Program”
Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

name =" transactional"

tagType = Boolean multiplicity =1 tagVaue= FALSE
Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

name =" multiple"

tagType = Boolean multiplicity =1 tagVaue= FALSE
Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

To specify the reference 'realizes in the CCA Conceptual Meta-Model, from a
Protocol Port, to the Protocol Role that the specifies the Protocol M essages that may
flow through the Protocol Port, the UML Profile for CCA utilizes a standard
Generalization, with the Generalization parent being the ProtocolRole, and the
Generalization child the Protocol Port. Same applies for FlowPort and FlowRole.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

When using standard UML Generalization, to produce a more specific
ProcessComponent, by specialization of a more generic one, a standard UML
Generalization can be used to extend, in the child ProcessComponent, a Port
specified in the parent ProcessComponent. The child Port of the Generalization
may realize additional ProtocolRole, therefore extending the set of

Protocol Message that may flow through the Port.

55.7 «ProtocolPort»

BaseClass Supertype Abstract
Foundation::Core::Class «Port» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The 'realizes reference in the CCA Conceptual Meta-Model, from «Protocol Port» to
«ProtocolRole» is specified in the UML Profile for CCA, with a Generalization
relationship with its parent being the «Protocol Role» and its child the «Protocol Port».

Constraints

A «Protocol Port» realizes a «Protocol Role»

55.8 «FlowPort»

BaseClass Supertype Abstract
Foundation::Core::Class «Port» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Note that in the UML Profile for CCA, «FlowPort» references directly a 'type
«DataElement», specifying the information that will be sent or received through the
«FlowPort».

But in UML, every kind of port specifiesits interaction capabilities by realizing a
«Protocol Role» in a «Protocol», owning «Protocol M essage» Stereotype of Reception.

To enforce the concept of «FowPort», additional Stereotypes named «Fl owProtocol»
and «FlowRole» are introduced in the UML Profile for CCA.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ia-77

ad/2001-02-19 Part Illa

5.5.9

Ila-78

A «FowProtocol» will ‘realize only «FlowRole». It is in «FlowRole» where the
constrains of the CCA Conceptual Meta-Model for «FowPort» will be effectively
enforced.

The 'type' reference in the CCA Conceptual Meta-Modd, from «FlowPort» to
«DataElement», is substituted in the UML Profile for CCA, with a Generalization
relationship with its parent being the «FlowRole» and its child the «FlowPort», the

very same mechanism to specify the 'realizes reference from «Protocol Port» to
«Protocol Role».

Constraints

A «FlowPort» realizes a «FlowRol e».

«PropertyDefinition»

BaseClass Supertype Abstract
Foundation::Core::Attribute «Property» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptua Meta-
Modsd.

The attribute ‘initial" in the CCA Conceptual Meta-Model corresponds in the UML
Profile for CCA, to the 'initial Value' metaattribute of Attribute.

Because constraintsin UML prevent Subsystem from having Structural Feature,
ProcessComponent is not able to directly contain PropertyDefinition (an Stereotype of
the Attribute Structural Feature). To allow ProcessComponent to contain
PropertyDefinition, a Stereotype of Class, named PropertyHolder (see profile Package
Common in Section 5.12in page 103). PropertyHolder will contain the
PropertyDefinition, providing this way a means for the ProcessComponent to contain
PropertyDefinition, albeit indirectly.

When using standard UML Generalization, to produce a more specific
ProcessComponent, by specialization of a more generic one, a standard UML
Generalization can be used to extend or override, in the child ProcessComponent, the
PropertyDefinition specified in the parent ProcessComponent. The child
ProcessComponent will have a PropertyHolder, itself child of a Generalization whose
parent must be the PropertyHolder in the parent ProcessComponent. The child
PropertyHolder may add new PropertyDefinition, or PropertyDefinition with the same
name of those in the parent PropertyHolder. In the later case, it will be considered an
override. When deriving the 'full descriptor' of the child PropertyHolder Class, the
specification of the PropertyDefinition in the child will take precedence over the
specification of the PropertyDefinition of the parent PropertyHolder.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

5.5.10 «enumeration» Granularity
Semantics
Corresponds to the acceptable tagVaues for ‘granularity’ in «ProcessComponent.

Values
Program
Owned

Shared

5.6 Protocol «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

5.6.1 Virtual metamodel

<<stereotype>> ’;”’};”;é;’” [<<stereotype>> Reception
aggregates i
PortOwner ~ |— garegatest = | ProtoPort agreg (from Common Behavior)
(from Owners) (from Common)
<<stereﬁ>type>>
F"""""’i"""""’7
| <<stereotype>>| <<stereotype>>
i Role § ProtocolMessage
<<stereotype>> e S— <<tagDefinition>> postCondition : Status = Any
Protocol L
,,(,
<<stereotype>> <<stereotype>> § <<stereotype>> <<stereotype>>
RequestReplyProtocol ProtocolRole § FlowRole SubProtocolRole
<<tagDefinition>> initiator : Boolean = FALSE '
‘ [aggregates ™
<<stereotype>>
FlowProtocol

Figure 20: Class Diagram of the Virtual metamodel for Protocol «profile» Package

5.6.2 Applicable subset

From Model Management
?? Subsystem — stereotyped as Protocol, RequestReplyProtocol and FlowProtocol

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-79

ad/2001-02-19 Part Illa

5.6.3

5.6.4

5.6.5

111a-80

From Foundation::Core

?? Class — stereotyped as Role, Protocol Role, FlowRole and SubProtocol Role

From Behavioral Elements::Common Behavior

?? Reception — stereotyped as Protocol M essage

Accessed Packages

The Protocol «profile» Package accesses the Owners and Common «profile» Packages.
Rationale

A Protocol is a Stereotype of Subsystem, containing Stereotypes of Class specifying the
roles of the Protocol.

Roleis an abstract supertype to provide common a ancestry for the various role kinds.

ProtocolRole and FlowRole are the roles of the Protocol, and specify the messages that
may flow between parties.

Protocol Role allows any kind of interactions, and may contain a number of
ProtocolM essage.

A ProtocolMessage is a Stereotype of the Reception Behavioral Feature, and specifies the
capability to receive a Signal with an Attribute typed as a DataElement, and the capability
to react to this, by raising one among a set of Signals, each one with an Attribute typed as
adifferent DataElement.

The special RequestReplyProtocoal is constrained for simple bi-directional interactions.

The special FlowProtocol is constrained for protocols with a single flow of information.

FowProtocol and FlowRole does not exist in CCA Conceptual Meta-Model. They are
introduced here in support of FlowPort.

FlowRole exists only within FlowProtocol, and constrained to have a single message,
while its party (the "other" role in its protocol) will have none.

SubProtocol Role does not exist in CCA Conceptual Meta-Model, and has been introduced
to support the concept of SubProtocol of the CCA Conceptual Meta-Model.

SubProtocolRole alows to nest other Protocol as a sub-Protocol, by nesting it into a
ProtocolRole. Only Protocol can have SubProtocols, RequestReplyProtocol and
FlowProtocol are smpler cases that are not allowed to have SubProtocol.

«Protocol»

BaseClass Supertype Abstract

Model Management:: Subsystem «PortOwner» Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

Inherits from «PortOwner» the capability to own «Protocol Role» and «FlowRole» .
Standard UML Generalization can be used to produce a more specific Protocol, by

specialization of a more generic one. The Protocol child of the Generalization will
inherit the various Role of the Generalization parent Protocol.

5.6.6 «Role»

BaseClass Supertype Abstract
Foundation::Core::Class «ProtoPort» Abstract
Semantics

Thereis no model element of the same name in the CCA Conceptual Meta-Model.

«Role» has been introduced in the UML Profile for CCA, to provide acommon
ancestor to «Protocol Role», «FlowRole» and «SubProtocol Role.

The CCA Conceptua Meta-Model does not need this common ancestor, as it does not
specify explicit model elements for «FlowRole» and «SubProtocol Role.

These have been introduced in the UML Profile for CCA in support of the FlowPort
and SubProtocol model elements of the CCA Conceptual Meta-Model. Please read their
specific headers for details.

When using standard UML Generalization, to produce a more specific Protocol, by
specialization of amore generic one, a standard UML Generalization can be used to
extend, in the child Protocol, a Role specified in the parent Protocol. The child Role of
the Generalization may define additional Protocol M essage.

56.7 «ProtocolRolex»

BaseClass Supertype Abstract
Foundation::Core::Class «Role» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-81

ad/2001-02-19 Part Illa

5.6.8

5.6.9

I1a-82

Tagged Values

name="initiator"

tagType = Boolean multiplicity =1 tagVaue= FALSE

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

«ProtocolMessage»

BaseClass Supertype Abstract
Behavioral Elements::Common Behavior::Reception - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The type of the «ProtocolMessage» will be expressed by a Signal, with an Attribute
typed as a «CompositeData», a DataType, a User defined DataType, or an enumeration.

A «ProtocolMessage» may specify a number of 'raisedSignal’. A raised Signal must
have an Attribute typed as a «CompositeData», a DataType, a User defined DataType,
or an enumeration.

Through specification of raised Signals, it is possible to express candidate responses to
the reception of a «Protocol M essage».

Specification of more complex sequencing of «ProtocolMessage» may be done with
the «Choreography» Stereotype of ActivityGraph. Please refer to section
"Choreography «profile» Package" for details.

Tagged Values

name =" postCondition"

tagType = Choreography::Status multiplicity =1 tagVaue="Any"

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

«SubProtocolRole»

BaseClass Supertype Abstract

Foundation::Core::Class Port Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

There is no model element of the same name in the CCA Conceptual Meta-Model.

It has been introduced in the UML Profile for CCA in support of the SubProtocol
concept, of the CCA Conceptual Meta-Model, from where it takes its name. Wherever
a SubProtocol would be used in the CCA Conceptua Meta-Moddl, a

«SubProtocol Role» must be used, for compliance to UML and the Profile for CCA.

If a«Protocol Role» must specify a «Protocol» as its (CCA Conceptual M-M)
SubProtocol, then a «SubProtocolRole» must be aggregated into the «Protocol Role.

Note that «Protocol Role» inherits from the abstract Stereotype «PortNester», and is
thus able to contain other specializations of «ProtoPort», in this case a
«SubProtocolRole» .

The «SubProtocolRole» will be bound by a Generalization relationship to one of the
«ProtocolRole» of the «Protocol» to be aggregated as sub-Protocol. The
«SubProtocolRole» must be the child of the Generalization, and the «Protocol Role» of
the sub-Protocol must be the parent.

This pattern is equivalent to the SubProtocol construct of the CCA Conceptua Meta-
Model, and captures al the meta-information, and is more precise, asit alows direct
binding to one of the «ProtocolRole» of the sub-Protocol. In the CCA Conceptua
Meta-Model a convention was, to match the protocol ‘initiator’ role, with the
corresponding sub-Protocol ‘initiator'.

Constraints

In compliance to UML visibility and access rules between Packages, a Protocol with
SubProtocol Role must have access to the Protocols that become sub-Protocol through
SubProtocolRole.

For each Protocol that becomes a sub-Protocol of atop Protocol, through
SubProtocol Role, there must be an access Dependency with the top Protocol as client
and the sub- Protocol as provider.

(Consgtraint defined by UML)

5.6.10 «RequestReplyProtocol»

BaseClass Supertype Abstract
Model Management:: Subsystem «Protocol» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-83

ad/2001-02-19 Part Illa

5.6.11

5.6.12

5.6.13

I1a-84

«FlowProtocol»

BaseClass Supertype Abstract
Model Management:: Subsystem «RequestReplyProtocol» Concrete
Semantics

Thereis no model element of the same name in the CCA Conceptual Meta-Model.

It has been introduced in the UML Profile for CCA in support of the «FowPort»,
which is constrained to realize «FlowRole».

A «FHowProtocol» has two «FlowRole». One has a single «Protocol M essage», the other
will have no «Protocol M essage».

Please read section "ComponentSpecification «profile» Package", header «FlowPort»
for related details.

«FlowRole»

BaseClass Supertype Abstract
Foundation::Core::Class «Role» Concrete
Semantics

Thereis no model element of the same name in the CCA Conceptual Meta-Model.
It has been introduced in the UML Profile for CCA in support of the «FowPort.

A «FlowRole» has at most a single «ProtocolMessage», and is contained in a
«FlowProtocol ».

Please read about «F owProtocol» immediately above, and section
"ComponentSpecification <«profile» Package", header «FlowPort» for related details.

Collaboration view of a Protocol

A Collaboration (from UML Package Behavioral Elements::Collaborations) may serve as
an alternate representation of a «Protocol», using the Collaboration model elements and
notation, but without adding any additional specification information.

The Collaboration will have ClassifierRoles with their base referencing the «Protocol Role»
of the «Protocol».

AssociationRoles and AssociationEndRoles in the Collaboration need to reference as their
base to Associations and AssociationEnds.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

5.6.14

changes on ad/2001-02-19 Part llla

To allow the representation of a «Protocol» as a Collaboration, such Associations may be
created within the «Protocol», with connection AssociationEnds referring as their type to
the «Protocol Roles».

The AssociationEnds must have visibility private to the «Protocol».
«Choreography» of a Protocol

A «Choreography» Stereotype of ActivityGraph can be used to specify, for a «Protocol»,
the valid sequences of messages and activation of sub-Protocols.

It provides aricher mechanism than the one provided by the 'raisedSignal’ of
«ProtocolMessage». Please refer to section "Choreography «profile» Package” for details.

5.7 ComponentRealization «profile» Package

5.7.1

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

Virtual metamodel

<<stereotype>> <<stereotype>>
ProcessComponent Composition
(from ComponentSpecification) (from Composition)

A\ /\

I

<<stereotype>> <<stereotype>> <<stereotype>>
PrimitiveComponent Com posedComponent CommunityProcess

Figure 21: Class Diagram of the Virtual metamodel for ComponentRealization «profile» Package

5.7.2

5.7.3

5.7.4

Applicable subset

From Model Management

?? Subsystem — stereotyped as PrimitiveComponent, ComposedComponent and
CommunityProcess

Accessed Packages

The ComponentRealization «profile» Package accesses the ComponentSpecification and
Composition «profile» Packages.

Rationale

PrimitiveComponent, ComposedComponent and CommunityProcess are Stereotypes of
Subsystem.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-85

ad/2001-02-19 Part Illa

I11a-86

PrimitiveComponent is constrained, such that it can not have an internal Composition, but
rather refers to anon-CCA artifact as the specification of its realization.

ComposedComponent is the only concrete kind of component, that may actually have an
internal Composition. The compositionspecifies the realization of the
ComposedComponent in terms of an assembly of other components.

CommunityProcess is just a Composition, constrained such that it does not need, and does
not have PortProxies.

5.7.5 «PrimitiveComponent»

BaseClass Supertype Abstract
Model Management:: Subsystem «ProcessComponent» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

A PrimitiveComponent will not have internal Composition. Rather it will specify or
delegate its actual implementation to non CCA artifacts (i.e. native code, or other UML
constructs).

Tagged Values
name =" implementationType"

tagType = String multiplicity =1 tagValue=

Corresponds to the meta-attribute of the same name in the CCA Conceptual Meta-
Modsd.

name =" implementationL ocation"

tagType = String multiplicity =1 tagValue=

Corresponds to the meta-attribute of the same name in the CCA Conceptual Meta-
Modsd.

5.7.6 «ComposedComponent»

BaseClass Supertype Abstract

Model Management:: Subsystem «ProcessComponent» Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

Note that while in the CCA Conceptual Meta-Model, ComposedComponent directly
specializes Composition, in the UML Profile for CCA, «ComposedComponent» is a
«CompositionOwner», and contai ns «Composition».

Because of this, «ComposedComponent» does not directly contain «PortProxy», which
are actually contained by its internal «Compositions.

5.7.7 «CommunityProcess»

BaseClass Supertype Abstract
Model Management:: Subsystem «Composition» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

A «CommunityProcess» inherits from «Composition» the ability to have
«ComponentUsage», «Connection» and «PortProxy».

A «CommunityProcess» is constrained such that it must not have «PortProxy». A
«PortProxys is used to bind from within a «Composition», to the externa «Port» of its

container «ComposedComponent». As a «CommunityProcess» is not contained within
a «ComposedComponent», it does not have «PortProxy».

5.8 Composition «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-87

ad/2001-02-19 Part Illa

5.8.1

Virtual metamodel

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
ProcessComponent - ProtoComponent § Property ProtoPort
(from ComponentSpecification) v (from Common) § (from Common) (from Common)
laggregates 1
indirectly § i ‘
through § |
PropertyHolder § §
<<Stere0[yr_;e>> B <<steréotype>> i <<stereotype>> <<stereotype>>
ComponentUsage PropertyValue § PortUsage PortProxy
laggregaes
]
aggregates ;aar’gé;?eﬁsﬁm =
<<stereotype>> <<stereotype>> <<stereotype>> Association
<<stereotype>> ComponentOwner ProxyOwner ConnectionOwner (from Core)
§ (from Owners) (from Owners) (from Owners)
argument D % provider = \ /
<<steregtype>>
N | . aggregates links =
<<stereotype>>
ContextualBinding
fehent N <<stereotype>> <<stereotype>>
Composition Connection
Figure 22: Class Diagram of the Virtual metamodel for Composition «profile» Package
5.8.2 Applicable subset
From Model Management
?? Subsystem — stereotyped as Composition and ComponentUsage
From Foundation::Core
?? Class — stereotyped as PortUsage and PortProxy
?? Attribute — stereotyped as PropertyValue
?? Association - stereotyped as Connection
?? Binding — stereotyped as Contextual Binding
111a-88 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

5.8.3 Accessed Packages

The ComponentSpecification «profile» Package accesses the Common and Owners
«profile» Packages.

5.8.4 Rationale

A Composition is a Stereotype of Subsystem, where «ProcessComponent» and its «Port»
are used as «ComponentUsage» and «PortUsage», respectively. «ComponentUsage» is a
Stereotype of Subsystem, and is a specialization of «ProtoComponent», thus having a
common ancestry with «ProcessComponent». «PortUsage» is a Stereotype of Class, and is
a specialization of «ProtoPort», thus having a common ancestry with «Port».

The «PortUsage» are bound to other «PortUsage» with «Connection», a Stereotype of
Association, forming an assembly.

«Protocol M essage» may flow between the «PortUsage» through the «Connection»,
according to the «Protocol Role» realized by the used «Port», and their «Choreography».

If the «Composition» is contained by a «ComposedComponent», then the «Composition»
may contain «PortProxy», an Stereotype of Class, specialization of «ProtoPort», thus
having a common ancestry with «Port».

«PortProxy» must be bound through «Connection», to the «Port» of the container
«ComposedComponent», such that «Protocol M essage» may flow from and to the «Port» of
the container «ComposedComponent», to the «ComponentUsage» of the «Compositions.

PropertyVaue is a Stereotype of Attribute, used to specify configuration values, in the
Composition, for the PropertyDefinition specified on the used ProcessComponent. Asthe
Composition is a Subsystem, and UML constraints prevent a Subsystem from having
Attribute, a utility Stereotype of Class, the PropertyHolder, is owned by the
ComponentUsage. Thisis a mechanism identical to the one explained for
PropertyDefinition in ProcessComponent.

Contextual Binding is a Stereotype of Binding, to resolve in a Composition, how to

substitute the ProcessComponent used by a ComponentUsage, with a different
ProcessComponent.

5.8.5 «Composition»

BaseClass Abstract
Model Management:: Subsystem Concrete
Supertypes

?? ComponentOwner — so it can contain Component
?? ConnectionOwner — so it can contain Connection

?? ProxyOwner — so it can contain PortProxy

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-89

ad/2001-02-19 Part Illa

5.8.6

5.8.7

111a-90

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

As adifference with the CCA Conceptual Meta-Model, the Composition in the UML
Profile for CCA, is not inherited by ComposedComponent, but rather, a
ComposedComponent will contain a Composition.

Constraints

In compliance to UML visibility and access rules between Packages, the Composition
must have access to the ProcessComponent used by each ComponentUsage in the
Composition.

For each ProcessComponent used by ComponentUsage in the Composition, there must
be an access Dependency with the Composition as client and the ProcessComponent as
provider.

(Consgtraint defined by UML)

«ComponentUsage»

BaseClass SupertypeAbstract

Model Management:: Subsystem «ProtoComponent» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

ComponentUsage and ProcessComponent share the common ancestor
ProtoComponent.

To specify the reference 'uses in the CCA Conceptual Meta-Model, from a
ComponentUsage, to the ProcessComponent used in the Composition, the UML Profile
for CCA utilizes a standard Generalization, with the Generalization parent being the
used ProcessComponent, and the Generalization child the ComponentUsage.

A ComponentUsage may own a Stereotype of Class, named PropertyHolder, itself
owning PropertyValue, to configure values for the specific conditions and intended
behavior of the ProcessComponent in the specific usage in the Composition.

«PropertyValue»

BaseClass Supertype Abstract

Foundation::Core::Attribute «Property» Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The attribute 'value' in the CCA Conceptual Meta-Model corresponds in the UML
Profile for CCA, to the 'initial Value' metaattribute of Attribute.

To specify in a ComponentUsage, a value with a PropertyValue, for a
PropertyDefinition of the same name, in the used ProcessComponent, a PropertyHolder
Stereotype of Class must be created and owned by the ComponentUsage.

The PropertyHolder in the ComponentUsage must be the child of a Generalization
relationship whose parent will be the PropertyHolder in the used ProcessComponent.

By having the same name in the PropertyDefinition and PropertyV alue — both
Stereotype of Attribute -, the PropertyValue will be considered an override of the
PropertyDefinition.

Both PropertyDefinition and PropertyVaue must have the same 'type' and multiplicity.
Only the'initial Value' metaattribute may differ, and the one in PropertyValue will take
precedence when obtaining the 'full descriptor' of the PropertyHolder Class, and

therefore will determine the actual value to initialize the property for the
ComponentUsage.

5.8.8 «PortUsage»

BaseClass SupertypeAbstract
Foundation::Core::Class «ProtoPort» Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

To specify the reference 'represents in the CCA Conceptual Meta-Model, from a
PortUsage in the ComponentUsage, to the Port of the used ProcessComponent, the
UML Profile for CCA utilizes a standard Generalization, with the Generalization

parent being the Port in the used ProcessComponent, and the Generalization child the
PortUsage in the ComponentUsage.

5.8.9 «PortProxy»

BaseClass SupertypeAbstract

Foundation::Core::Class «ProtoPort» Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-91

ad/2001-02-19 Part Illa

5.8.10

I11a-92

Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

To specify the reference 'represents in the CCA Conceptual Meta-Model, from a
PortProxy in a Composition in a ComposedComponent, to an external Port of the
enclosing ComposedComponent, the UML Profile for CCA utilizes standard
Generalizations, with the Generalization child being the PortProxy, and the
Generalization parents being the "conjugate”’ Roles, of all the Roles realized by the
external Port.

"Conjugate” Role is meant as in the Real-Time Object Oriented Method (ROOM),
where for a Port realizing a Role in a Protocol, the "conjugate” is the "other" Role of
the Protocol, that is not realized by the Port.

With this approach, PortProxy and its represented Port are "connectabl€”, each one
realizing one of the parties of a Protocol. The PortProxy represents, within the
Composition, the peer Port of other components, that may eventually be connected to
the Port of the enclosing ComposedComponent.

This construct allows to connect to the PortProxy, an internal PortUsage, or other
PortProxy, as if they were effectively communicating Protocol M essage with the
eventual peers of the enclosing ComposedComponent.

The Port in the ComposedComponent becomes a transparent " pass-through™ for the

Protocol M essage traffic incoming and outgoing in/to the externally connectable peers.
(In ROOM terms : the Port of the enclosing ComposedComponent is arelay Port).

«Connection»

BaseClass Supertype Abstract
Foundation::Core::Association - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Tagged Values

name =" protocol Scope"

tagType = Protocol multiplicity =1 tagValue=

Corresponds to the Association with AssociationEnd of same name, between
«Connection» and «Protocol», in the CCA Conceptual Meta-Model.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

name = " messageScope"

tagType = Protocol M essage multiplicity =1 tagValue=

Corresponds to the Association with AssociationEnd of same name, between
«Connection» and «Message», in the CCA Conceptual Meta-Model.

Constraints

In compliance to UML visibility and access rules between elements in different
Packages, the PortUsage in different ComponentUsage have no visibility on the
PortUsage in other ComponentUsage.

None of the connection AssociationEnd of a Connection will be navigable.

(Consgtraint defined by UML)

5.8.11 «ContextualBinding»

BaseClass Supertype Abstract
Foundation::Core::Binding Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The 'context’ of the Contextual Binding in the CCA Conceptual Meta-Modd is
represented by the 'client’ of the UML Binding, which is the Composition.

The 'fills of the ConceptualBinding in the CCA Conceptua Meta-Model is
represented by the 'provider' of the UML Binding, which is a ComponentUsage.

The 'bindsTo' of the Conceptual Binding in the CCA Conceptual Meta-Model is
represented by the ‘argument’ of the UML Binding, which is a ProcessComponent.

Constraints

Only «Composition» can contain «Contextual Binding.
The 'client’ of a «Contextual Binding» is a «Compositiony.

The 'provider’ of a «ContextuaBinding» is a (re) used «ProcessComponent» in a
«Composition».

The 'argument’ of a «Contextual Binding» is a «ProcessComponent».

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 111a-93

ad/2001-02-19 Part Illa

5.8.12 Collaboration view of a Composition

A Collaboration (from UML Package Behavioral Elements::Collaborations) may serve as
an alternate representation of a «Composition», using the Collaboration model elements
and notation, but without adding any additional specification information.

The Collaboration will have ClassifierRoles with their base referencing «PortUsages» of
«ComponentUsages» in the «Composition.

If the «Composition» is a «ComposedComponent», the Collaboration will have
ClassifierRoles with their base referencing the «PortProxies» of the «Compositions.

The AssociationRoles and AssociationEndRoles in the Collaboration, will reference as
their 'base’ the Coonection, and its AssociationEnds, of the «Composition.

5.9 Choreography «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.

591 Virtual metamodel

FinalState
(from State Machines)

Pseudostate
(from State Machines)

4&

ActivityGraph
(from Activity Graphs)

A L}
L

<<stergotype>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereptype>> <<stereotype>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>| |<<stereotype>>| | <<stereotype>>
Choreography TerminateSuccess TerminateFailure Start Split Join
Ny SubactivityState
<<enumeration>> -
Status (from Activity Graphs)
Sucess
TimeoutFailure /
TechnicalFailure
- BusinessFailure <<stereotype>>
ActionState AnyFailure
(from Activity Graphs) Any <<stereotype>>
Transition SubStep

/\

<<stereqtype>> L%
<<stereotype>> <<stereotype>>
<<stereotype>>
SubProtocolStep <<stereotype>> <<stereotype>> <<stereotype>>
<<tagDefinition>> subProtocol : Protocol MessageStep ChoreographyTransition Initiates
<<tagDefinition>> scope : Port <<tagDefinition>> scope : Port

(from State Machines)

<<tagDefinition>> scope : Port

Figure 23: Class Diagram of the Virtual metamodel for Choreography «profile» Package

I11a-94

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

5.9.2 Applicable subset

From Behavioral Elements::Activity Graphs

?? ActivityGraph — stereotyped as Choreography.
?? ActionState — stereotyped as SubProtocol Step
?? SubActivityState — stereotyped as SubStep

From Behavioral Elements::State Machines
?? Pseudostate — stereotyped as Start, Split and Join
?? Fina State — stereotyped as TerminateSuccess and TerminateFailure

?? Transition — stereotyped as M essageStep and ChoreographyTransition

An enumeration User defined DataType — Status
5.9.3 Accessed Packages

The Choreography «profile» Package accesses the Common «profile» Package.
5.94 Rationale

ActivityGraph has been chosen as the baseClass for «Choreography», because it provides
the means of specifying the possible sequences of activities and interactionsin a system.

Final State has been chosen as the baseClass for «TerminateSuccess» and
«TerminateFailure», as both are special conditions of the termination of an ActivityGraph.

Pseudostate, has been chosen as the baseClass for «Start», «Split» and «Join», with values
of its 'kind' metaattribute equal to #initial, #fork and #join, because these are sufficiently
similar to the intended semantics.

Transition has been chosen as the baseClass for «M essageStep» because it provides, with
an 'effect’ or a'trigger’, the means to specify sending or receiving a message.

Transition has been chosen as the baseClass for «ChoreographyTransition» because it
provides with a'guard’, the means to specify conditional paths of activity.

ActionState, has been chosen as the baseClass for «SubProtocol Step» because the intention
isto express that the interactions of a whole subProtocol will take place as single activity,
and an activity is better expressed with an ActionState, and the help of atagValue to refer
to the subProtocol.

SubactivityState, has been chosen as the baseClass for «SubStep», because it allows to nest
sub machines, drilling down in each level into more deeply nested scope.

5.9.5 «Choreography»

BaseClass Supertype Abstract

Behavioral Elements::Activity Graphs::ActivityGraph - Abstract

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-95

ad/2001-02-19 Part Illa

5.9.6

5.9.7

5.9.8

111a-96

Semantics

Corresponds to the model element named Choreography in the CCA Conceptual Meta-
Modsd.

Constraints - plain

The 'context’ of a «Choreography» isa «Protocol» or a «ProcessComponent», both of
them «PortOwner».

A «Choreography» has a Partition (also known as swim-lane) for each «Port» of its
‘context’ «PortOwner». The name of each Partition will be the name of the «Port» in its
‘contents.

«Start»

BaseClass Supertype Abstract
Behavioral Elements::State Machines::Pseudostate Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Constraints - plain

A «Start» Stereotype of Pseudostate is an Initial state.

«Split»

BaseClass Supertype Abstract
Behavioral Elements::State M achines::Pseudostate Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Constraints - plain

A «Split» Stereotype of Pseudostate is a Fork state.

«Join»

BaseClass Supertype Abstract

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Behavioral Elements::State M achines::Pseudostate Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

Constraints - plain

A «Join» Stereotype of Pseudostate is a Join state.

599 «TerminateSuccess»

BaseClass Supertype Abstract
Behavioral Elements::StateM achines::Final State - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-Model.

5.9.10 «TerminateFailure»

BaseClass Supertype Abstract
Behavioral Elements:: StateM achines::Final State - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta
Modsd.

5.9.11 «MessageStep»

BaseClass Supertype Abstract
Behavioral Elements::State Machines:: Transition - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The «MessageStep» may be sent or received.

If the «MessageStep» is in the Partition corresponding to the initiator «Port», then the
«ProtocolMessage» is being sent, if not then the «ProtocolMessage» is being received.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-97

ad/2001-02-19 Part Illa

5.9.12

111a-98

Tagged Values
name =" scope’

tagType = SubProtocolRole multiplicity = 0..1 tagVaue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta
Model, between Step and StepScope.

The value must be the name of a SubProtocolRole.

If the "scope" taggedV alue has been defined, then «ProtocolMessage» whose
Signal is referenced as 'effect’ SendAction, or 'trigger' Signal Event, must be one of

the «Protocol M essage» of the SubProtocol Role identified by "scope”. ".

Constraints - plain

If the «Protocol M essage» is being sent, the «ViessageStep» will have an ‘effect’
SendAction, with its'signal’ referencing the Signal of the «Protocol M essage».

If the «ProtocolMessage» is being received, the «MessageStep» will have a'trigger’
SignalEvent, with its 'signal’ referencing the Signal of the «Protocol M essage».

Diagram Notation

If the «ProtocolMessage» is being sent, a Signal sending symbol for Transition.

If the «ProtocolMessage» is being received, a Signal receipt symbol for Transition.

«SubProtocolStep»

BaseClass Supertype Abstract
Behaviora Elements::Activity Graphs::ActionState - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

When producing the Choreography of a «Protocol» with sub-Protocol, there will be a
SubProtocol Step for each of the «Protocol Role» of the Protocol embedded as sub-
Protocol.

A Transition stereotyped as «lnitiates» must bind with the initiator «SubProtocol Role»
asits'source, and the non-initiator «SubProtocol Role» as its 'target’.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Tagged Values
name =" scope’

tagType = AbstractRole multiplicity = 0..1 tagVaue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta-
Model, between Step and StepScope.

The value must be the name of the initiator Protocol Role of the SubProtocol.

name =" subProtocol"

tagType = SubProtocolRole multiplicity = 0..1 tagVaue=

Corresponds to the relationship of the same name in the CCA Conceptual Meta-
Model, between Protocol Step and SubProtocol.

The value must be the name of a SubProtocolRole.

If the "scope" taggedV alue has been defined, then the "subProtocol” must refer to a
subProtocol of the SubProtocolRole identified by "scope'”..

5.9.13 «SubStep»

BaseClass Supertype Abstract
Behavioral Elements::Activity Graphs::SubactivityState - Concrete
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

The Step referenced as 'sub’ in the CCA Conceptual Meta-Model, will be vertex
contained in the submachine ActivityGraph of the SubStep.

If the "scope” taggedV alue has been defined, then the Step in the submachine
ActivityGraph will resolve namesin, and be constrained to, referencing
ProtocolM essages and SubProtocol Roles of the SubProtocolRole identified by "scope”..

5.9.14 «ChoreographyTransition»

BaseClass Supertype Abstract

Behavioral Elements::StateM achines:: Transition - Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 111a-99

ad/2001-02-19 Part Illa

5.9.15

5.9.16

I11a-100

Semantics

Corresponds to the model element named Transition in the CCA Conceptual Meta-
Modsd.

The guard of the Transition will be an expression that will evaluate true if an specific
Protocol M essage has been actually sent or received.

Tagged Values

name =" precondition”

tagType = Status multiplicity =1 tagValue=

Corresponds to the attribute of the same name in the CCA Conceptual Meta-Model.

«enumeration» Status
Semantics
Corresponds the Enumeration of same name in the CCA Conceptual Meta-Model.

Values

Success
TimeoutFailure
TechnicalFailure
BusinessFailure
AnyFailure

Any

«Initiates»

BaseClass Supertype Abstract
Behavioral Elements::State Machines:: Transition - Concrete

Corresponds to a Transition between Protocol Step, in a Protocol with subProtocol in the
CCA Conceptual Meta-Model.

Also used as Transition between the ActionStep corresponding to the activities performed
on activation of PortUsage or PortProxy, when creating the High Level Activity Graph of a
Composition (see section 5.11 "High-level ActivityGraph of a Composition™ in page 102).

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla
Semantics

When producing the Choreography of a Protocol with sub-Protocols, will bind to the
initiator «SubProtocol Role» as its 'source’, and the non-initiator «SubProtocol Role» as
its 'target'

When producing an ActivityGraph as alternate representation of a Composition (see
section 5.11 "High-level ActivityGraph of a Composition” in page 102), corresponds to
a Connection between PortUsage -or PortProxy - in the Composition. The 'source’ of
the «Initiates» Transition will be the ActionState corresponding to the the activity of

the 'initiator' PortUsage, and the 'target’ will be the ActionState representing the
activity performed by the non-initiator peer connected PortUsage.

5.10 DocumentModel «profile» Package

Corresponds to the package of the same name in the CCA Conceptual Meta-Model.
5.10.1 Applicable subset

The DocumentModel Profile Package identifies the applicable subset of UML elements,
within the following accessed UML Packages :

From Foundation::Core

?? Class — stereotyped as CompositeData

5.10.2 Virtual metamodel

Class
(from Core)

<<stereotype>>

<<stereotype>>
CompositeData

Figure 24: Class Diagram of the Virtual metamodel for DocumentModel «profile» Package

5.10.3 «CompositeData»

BaseClass Supertype Abstract

Foundation::Core::Class - Concrete

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-101

ad/2001-02-19 Part Illa
Semantics

Corresponds to the model element of the same name in the CCA Conceptual Meta-
Modsd.

Constraints - plain

The Attributes of a CompositeData will be typed as a DataType, Enumeration or a
«CompositeData».

A «CompositeData» may only have supertypes stereotyped as «CompositeData».

A «CompositeData» can not be an active class.

5.11 High-level ActivityGraph of a Composition

An alternate representation of a Composition (i.e., a CommunityProcess or a Component),
may be rendered using the model elements of UML ActivityGraph.

Please see example in section 7.1.7 "High level ActivityGraph of a Composition” in page
127.

To produce an ActivityGraph from a Composition, the following constructive rules can be
applied :

1 There will be a Partition (also known as swim-lane) for each ProcessComponent in
the Composition. The name of the Partition will be the name of the
ProcessComponent in the Partition ‘contents.

2. There will be an ActionState (also known as activity) for each Port ,of each
ProcessComponent in the Composition, The ActionState will be contents of the
Partition associated with the ComponentUsage owning the PortUsage. The name of
the ActionState will be the name of the Protocol on the PortUsage (more precisely,
the name of the Protocol owning the ProtocolRole realized by the Protocol Port of
the PortUsage).

3. There will be a Transition stereotyped as «Initiates» for each Connection in the
Composition, with its 'source’ in the ActionState corresponding to an initiator, and
its 'target' in the ActionState representing the activity performed by the peer
connected PortUsage.

4. If the Protocol of a PortUsage (more precisely: the Protocol owning the
ProtocolRole realized by the Protocol Port used by the PortUsage) has subProtocols,
then there will be a SubactivityState, rather than an ActionState, to represent said
Port. The SubactivityState will contain a submachine with ActionStates
corresponding to each of the subProtocols. Transitions will enter and exit to/from
specific sub-activities to represent the various phases of subProtocol activity in the
dynamics of the composition.

I11a-102 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

5. If the Composition pertains to a ComposedComponent, there will be a Partition for
each of the PortProxy in the Composition (representing the peers of Protocol Ports
in the enclosing ComposedComponent).

6. If the Composition pertains to a ComposedComponent, there will be an ActionState
for each PortProxy, in the corresponding Partition. If the Protocol Role realized by
the PortProxy has sub-ProtocolRole, there will be sub-ActionStates for each of the
sub-ProtocolRole. Transitions will enter and exit to/from specific sub-activities to
represent the various phases of subProtocol activity in the dynamics of the

composition.
5.12 Common «profile» Package
A convenience Package, to assist in the definition of Stereotypes for CCA concepts.
Contain a number of abstract Stereotypes, to be specialized in other Packages.
5.12.1 Virtual metamodel
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
MessageOwner PortNester PortOwner CompositionOwner PropertyHolderOwner
(from Owners) (from Owners) (from Owners) (from Owners) (from Owners)

|

\

aggregates ﬁ

\ /

/
/

aggregates ﬁ

<<stereotype>> <<stereotype>>
ProtoPort ProtoComponent
Attribute Class
(from Core) (from Core)
// //

<<stereqtype>> <<stereotype>>

<<stereotype>> aggregates <<stereotype>>

Property [| |] PropertyHolder

Figure 25: Class Diagram of the Virtual metamodel for Common «profile» Package
5.12.2 Applicable subset

From Model Management

?? Subsystem — stereotyped as ProtoComponent

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

I11a-103

ad/2001-02-19 Part Illa

From Foundation::Core
?? Class — stereotyped as ProtoPort and PropertyHolder
?? Attribute — stereotyped as Property

5.12.3 Accessed Packages

The Common «profile» Package accesses the Owners «profile» Package.

5.12.4 «ProtoPort»

BaseClass Abstract
Foundation::Core::Class - Abstract
Supertypes

M essageOwner — a «ProtoPort» may contain «Protocol M essage»
PortNester — a «ProtoPort» may contain other «ProtoPort». This capability is used by
«Protocol Role» and «SubProtocol Rolex», such that it can contain «SubProtocol Role,

and thus allowing specification of the concept of SubProtocol in the CCA Conceptua
Meta-Modd.

Semantics

A common abstract supertype for «Protocol Role», «Port», «Protocol Port», «FlowPort»,
«PortUsage», «PortProxy», all of which may have «Protocol M essage» — directly or
inherited.

To support the SubProtocol meta-model element, in the CCA Conceptual Meta-Model,
the facility of «ProtoPort» nesting other «ProtoPort», isintroduced here, and exploited
by «Protocol Role» in the Protocol «profile» package.

With the common «ProtoPort» ancestry, Generalizations may be legally specified and
constrained, as mapping of the relationships of the CCA Conceptual Meta-Mode :

?? 'redlizes «Protocol Role» with «Protocol Port» (also «FowPort», in the profile).
?2? 'represents’ «Protocol Port» or «FlowPort» by «PortProxy» or «PortUsage»

Constraints

Only «PortOwner» and its specializations may contain «ProtoPort».

5.12.5 «ProtoComponent»

BaseClass Abstract

Model Management:: Subsystem - Abstract

I11a-104 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Supertypes

PortOwner — a «ProtoComponent» may contain «Port»
CompositionOwner — a «ProtoComponent» may contain «Composition»

PropertyHolderOwner - — a «ProtoComponent» may contain «PropertyHolder», itself a
container for «Property»

Semantics

A common abstract supertype for «ProcessComponent», «ComposedComponent»,
«PrimitiveComponent» and «ComponentUsage», all of which may have kinds of
«ProtoPort» — directly or inherited — and configuration properties/values.

Having the «Composition» containment at this single common supertype simplifies the
constraints for Generalizations among more specialized Stereotypes. An OCL constraint in
«ProcessComponent» and «PrimitiveComponent» exclude their inherited Composition
containment capabilities.

With the common «ProtoComponent» ancestry, Generalizations may be legally specified
and constrained, as mapping of the relationships of the CCA Conceptual Meta-Model :

?7? 'supertype’ between «ProcessComponent» and more specific stereotypes

?? 'uses «ProcessComponent», «PrimitiveComponent» or «ComposedComponent» by
«ComponentUsage»

Constraints

Only «ComponentOwner», its specializations, Model Management::Package and
Model Management::Model may contain «ProtoComponent.

5.12.6 «PropertyHolder»

BaseClass Supertype Abstract
Foundation::Core::Class - Concrete
Semantics

Servesto hold the Stereotype of Attribute named «Property», within
«ProtoComponent», a Stereotype of Subsystem, which UML constrains and can not
have Attribute.

More specifically, «ProcessComponent», «ComposedComponent,
«PrimitiveComponent» may contain «PropertyHolder» with «PropertyDefinition,
while «ComponentUsage» may contain «PropertyHolder» with «PropertyV aue».

Constraints

Only «PropertyHolderOwner» and its specializations may contain «PropertyHolder».

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-105

ad/2001-02-19 Part Illa

5.13

I11a-106

5.12.7

Oowners

5.13.1

«Property»

BaseClass Supertype Abstract
Foundation::Core::Attribute - Abstract
Semantics

A common supertype for «PropertyDefinition» and «PropertyV alue», both representing
an structural slot of configuration data.

The'initialValue' metaattribute of Attribute will be used to specify the attribute 'initial’
of PropertyDefinition in the ComponentSpecification package of the CCA Conceptual
Meta-Modd.

The 'initialValue' metaattribute of Attribute will be used to specify the attribute 'value
of PropertyVaue in the Composition package of the CCA Conceptua Meta-Model.

Constraints

Only «PropertyHolder» may contain «Property».

A «Property» has public visibility.

«profile» Package

A convenience Package, to assist in the definition of Stereotypes for CCA concepts.

Contain a number of abstract Stereotypes, to be specialized by Stereotypes in other
Packages of the Profile.

These Stereotypes have their names as "xxxOwner" or "xxxNester", with the "xxx" part
specifying the kind of their contained artifacts.

Thisisintended to help in reading the Profile, as UML Stereotypes do not immediately
communicate the elements that may be aggregated by them.

Stereotypes elsewhere in the Profile, specialize these abstract "Owner" Stereotypes. Using
multiple inheritance from these "Owner" abstract Stereotypes, the actual combined
contents of Stereotypes can be readily expressed.

Applicable subset

From Model Management

?? Subsystem — stereotyped as PortOwner, ComponentOwner, ConnectionOwner,
ProxyOwner, PropertyHolderOwner and CompositionOwner

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

From Foundation::Core

?? Class — stereotyped as M essageOwner, PropertyOwner and PortNester.

5.13.2 Accessed Packages
The Owners «profile» Package accesses no other «profile» Packages.
5.13.3 Rationale
Subsystem has been chosen as the baseClass for PortOwner, ComponentOwner,
ConnectionOwner, ProxyOwner, PropertyHolderOwner and CompositionOwner, as it
provides both organization and classification capabilities thanks to its supertypes Package
and Classifier.
Classisthe baseClass for MessageOwner, PropertyOwner, able to contain features.
Classisthe baseClass for PortNester, asit provides Port containment capabilities to Port,
which is an stereotype of Class.
5.13.4 Virtual metamodel
Subsystem
(from Model Management)
<<stergotype>> <<stereotype>> <<stergotype>> <<stefeotype>> <<stereotype>> <<stergotype>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
PortOwner ComponentOwner ConnectionOwner ProxyOwner PropertyHolderOwner CompositionOwner
Class
(from Core)
/\
<<stere#type>> <<stere%type>>
<<stereotype>> <<stereotype>>
MessageOwner PortNester
Figure 26: Class Diagram of the Virtual metamodel for Owners «profile» Package
5.13.5 «PortOwner»
BaseClass
Supertype Abstract

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

Model Management:: Subsystem - Abstract

I11a-107

ad/2001-02-19 Part Illa

5.13.6

5.13.7

5.13.8

5.13.9

5.13.10

I11a-108

Semantics
Container of «Port»», with Subsystem baseClass

«ComponentOwner»

BaseClass Supertype

Model Management:: Subsystem -
Semantics

Container of «ProtoComponent».
«ConnectionOwner»

BaseClass Supertype

Model Management:: Subsystem -
Semantics
Container of «Connection».

«ProxyOwner»

BaseClass Supertype

Model Management::Subsystem -
Semantics
Container of «Proxy».

«PropertyHolderOwner»

BaseClass Supertype

Model Management:: Subsystem -
Semantics
Container of «PropertyHolder».

«CompositionOwner»

BaseClass Supertype

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

Model Management:: Subsystem
Semantics

Container of «Compositions.

5.13.11 «MessageOwner»

BaseClass

Foundation::Core::Class
Semantics
Container of «Protocol M essage».

5.13.12 «PortNester»

BaseClass

Foundation::Core::Class

Semantics

changes on ad/2001-02-19 Part llla

Supertype

Supertype

Container of «Port», with Class baseClass.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

Abstract

Abstract

Abstract

Abstract

Abstract

I11a-109

ad/2001-02-19 Part Illa

6. Constraints (OCL)

The format for expression of OCL in this document is not (yet) the same as
that for the other documents in this submission. Thiswill be corrected in the
next revision of this document.

6.1 Invariant Constraints (OCL)

These are the formal OCL constraints specifying well-formedness rules for models
according to the UML Profile for CCA.

See section "Definition Constraints', below, for definitions used in these invariants.

6.1.1 ComponentSpecification «profile» Package

6.1.1.1 «Port»

cont ext Protocol Port
inv:
not def Prot ocol Rol es->i seEnpty()

6.1.1.2 «ProtocolPort»

context Protocol Port
inv:
def Prot ocol Rol es->forAll (aPR | aPR isStereoTyped("Protocol Rol e"))

6.1.1.3 «FlowPort»

cont ext Fl owPort
inv:
def Prot ocol Rol es->forAll (aPR | aPR. isStereoTyped("Fl owRol e"))

6.1.2 Common «profile» Package

6.1.2.1 «ProtoPort»

cont ext ProtoPort
inv:

not namespace->i sEnmpty() and nanespace. i sSt er eoKi nded(" Port Omer")

6.1.2.2 «ProtoComponent»

cont ext ProtoConponent
inv:

not namespace->i sEmpty() and (

I1la-110 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

namespace. i sSt er eoKi nded(" Conponent Ower") or
namespace. i SOCLType(Model Managenent:: Package) or
namespace. i SOCLType(Model Managenent: : Model))

6.1.2.3 «PropertyHolder»

cont ext PropertyHol der
inv:

not namespace->i sEmpty() and owner.nanespace. i sStereoKi nded(" PropertyHol der Oaner")

6.1.2.4 «Property»

context Property
inv:
not owner->i sEnpty() and owner.isStereoKi nded("PropertyHol der") and

inv:

visibility = #public

6.2 Definition Constraints (OCL)

To improve legibility of constraints in the profile, the following definition constraints are
defined in the context of various UML model elements and Profile Stereotypes.

Whenever atoken with the name of the definition constraints below is found in a
constraint elsewhere in the profile, its value will be derived from the OCL expression in
the definition constraint.

6.2.1 General OCL Definition Constraints

These definition constrains have been taken from the OMG Document ad/2000-02-02,
UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data Access
Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS AG, Lucent
Technologies, Inc. and Persistence Software.

cont ext Mbdel El enent
def:
let allStereotypes : Set(Stereotype) =
-- set with the Stereotype applied to the Mdel El ement and
-- all the stereotypes inherited by that Stereotype
sel f.stereotype->union(self.stereotype.generalization.parent.all Stereotypes)

let isStereoTyped(theStereotypeName : String) : Bool ean=
-- returns true if an Stereotype with nane equal to the argunent
-- has been applied to the Mdel El enent
sel f.stereotype. name = theStereotypeNane

l et isStereoKinded(theStereotypeNane : String) : Boolean =
-- returns true if an Stereotype has been applied to the Mdel El enent
-- with its name equal to the argunent
-- or the nane of any of its inherited Stereotypes is equal to the argunent

sel f.all Stereotypes->exi sts(aStereotype : Stereotype |

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Illa-111

ad/2001-02-19 Part Illa

aSt er eot ype. name = theSt er eot ypeNane)

6.2.2 Protocol «profile» Package

6.2.2.1 «Protocol»

-- the Protocol Roles in a Protocol
def Prot ocol Rol esStrict : Set(Protocol Role) =
ownedEl enent - >sel ect (aMbdel El ement : Foundati on:: Core: : Model El ement |
aMbdel El ement .i sOCLType(Cl ass) and alMbdel El enent . i sSt ereoTyped(" Protocol Role"))

-- the Protocol Roles or their specializations, in a Protocol
def Prot ocol Rol es : Set(Protocol Role) =
ownedEl enent - >sel ect (aMbdel El ement : Foundati on:: Core: : Model El ement |
aMbdel El ement . i sOCLType(Cl ass) and aModel El enent . i sSt er eoKi nded(" Prot ocol Rol e"))

-- the set of all imediate parent Protocols
def Al l | mredi at eParent Protocols : Set (Protocol) =
general i zati on. parent. ocl AsType(Protocol Rol e)

-- the set of all immediate child Protocols
def Al l | mmedi at eChi | dProtocols : Set (Protocol) =
speci al i zation.child. ocl AsType(Protocol)

-- the Association in the Protocol, to support an optional Protocol Coll aboration

cont ext Protocol
def:
| et
| et
def:
| et
def:
| et
def:
| et

def Associ ation : Association =
ownedEl ement->any(aOE : Mddel El enent | aCE.isCcl Type(Association))
.ocl AsType(Associ ati on)

6.2.2.2 «ProtocolRole»

def:

| et
def:

| et
def:

| et

cont ext Protocol Rol e

-- the Protocol of a Protocol Rol e
def Protocol : Protocol = nanmespace. ocl AsType(Protocd)

-- the Protocol Messages of a Protocol Role
def Prot ocol Messages : Set(Protocol Message) =
feature->sel ect(aFeature : Foundation::Core::Feature |
aFeature.i sOCLType(Reception) and aFeature.isStereoTyped("Protocol Message"))

-- all the Protocol Messages of a Protocol Role, included inherited ones
def Al | Prot ocol Messages : Set(Protocol Message) =
al | Feat ur es- >sel ect (aFeature : Foundation::Core:: Feature |

Ila-112

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

aFeature.i sOCLType(Reception) and aFeature.isStereoTyped("RPotocol Message"))
def:
-- the sole Protocol Message of a Protocol Rol e
| et def Sol eProt ocol Message : Protocol Message = def Al | Prot ocol Messages - >any(true)
def:
-- the conjugate Protocol Role : the "other" Protocol Role of its Protocol
| et def Conj ugat eProtocol Rol e : Protocol Role =
def Pr ot ocol . def Prot ocol Rol es->any(otherPR : Protocol Role | not (otherPR = self))
def:
-- the Signals of all the Protocol Messages of the Protocol Rol e
let defAllSignals : Set (Signal) =
def Al | Prot ocol Messages->col l ect(aPM : Protocol Message | aPM signal)
def:
-- the set of all imediate parent Protocol Rol es
| et def Al'l |l medi at ePar ent Protocol Roles : Set (Protocol Role) =
general i zati on. parent. ocl AsType(Protocol Rol e)
def:
-- the set of all immediae child Protocol Rol es
| et def Al'l | medi at eChi | dProtocol Roles : Set (Protocol Role) =
speci al i zation. child. ocl AsType(Protocol Rol e)

6.2.2.3 «ProtocolMessage»

context Protocol Rol e
def:
-- the Protocol Rol e of a Protocol Message
| et def Protocol Role : Protocol Rol e = owner. ocl AsType(Protocol Rol e)
def:
-- the sole/one of the raisedSignal of a Protocol Message
| et def Sol eRai sedSi gnal : Signal = raisedSignal->any(true)
def:
-- the MessagePayl oad of the signal of a Protocol Message
| et def MessagePayload : MessagePayl oad =
signal . feature->any(aF : Feature | aF.isStereoTyped("MessagePayl oad"))

6.2.2.4 «ProtocolPort»

context Protocol Port
def:
-- the ProcessConponent of a Protocol Port
| et def ProcessConponent : ProcessConponent = nanmespace. ocl AsType(ProcessConponent)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1la-113

ad/2001-02-19 Part Illa

| et

general i zation->col l ect(aG |

the Protocol Rol eReal i zati ons of a Protocol Port
def Prot ocol Rol eReal i zations :

Set (Protocol Rol eReal i zati on)
Generalization |

aG ocl AsType(Protocol Rol eReal i zation))

-- the Protocol Roles realized by a Protocol Port

| et def Protocol Rol es :

Set (Protocol Rol eReal i zat i on)
def Pr ot ocol Rol eReal i zati ons->col | ect (aPRR |
aPRR. ocl AsType(Protocol Rol e))

Pr ot ocol Rol eReal i zation |

6.2.3 ComponentSpecification «profile» Package

6.2.3.1 «ProcessComponent»
cont ext ProcessConponent
def:
-- the Protocol Ports in a ProcessConponent
| et def Protocol PortsStrict Set (Protocol Port) =
ownedEl ement - >sel ect (aMbdel El ement Foundati on: : Cor e: : Model El ement |
aMbdel El ement . i sOCLType(C ass) and albdel Element . i sSt ereoTyped(" Protocol Port"))
-- the Protocol Ports or their specializations, in a ProcessConmponent
| et defProtocol Ports : Set(Protocol Role) =
ownedEl ement - >sel ect (aMbdel El enent Foundati on: : Cor e: : Mbdel El ement |
aMbdel El ement . i sOCLType(C ass) and aModdel El enent . i sSt ereoKi nded("Protocol Port"))
-- the PropertyHol ders in a ProcessConponent
| et def PropertyHol ders : Set(PropertyHol der) =
ownedEl ement - >sel ect (aMbdel El enent Foundati on: : Cor e: : Mbdel El ement |
aMbdel El emrent . i sOQ.Type(Cl ass) and
aMbdel El ement . i sSt ereoti nded(" PropertyHol der"))
-- the PropertyDefinitions in a ProcessConponent
| et def PropertyDefinitions: Set(PropertyDefinition) =
def PropertyHol ders. def PropertyDefinitions
6.2.3.2 «Property»
context Property
def: -- the PropertyHol der of the Property
| et def PropertyHol der PropertyHol der = owner. ocl AsType(PropertyHol der)
6.2.3.3 «PropertyHolder»
cont ext PropertyHol der
def:

-- the ProcessConponent of a PropertyHol der

| et def ProcessConponent

Pr ocessConponent

namespace. ocl AsType(ProcessConponent)

-- the PropertyDefinitions of a PropertyHol der

| et def PropertyDefinitions : Set(PropertyDefinition)

Illa-114

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

feature->collect(aF : Foundation::Core::Feature |

aF. ocl AsType(PropertyDefinition))

6.2.4 Composition «profile» Package

6.2.4.1 «Composition»

cont ext Conposition
def:
-- the ProcessConponents in a Conposition
| et def Component Usage : Set (ProcessConponent) =
ownedEl enent - >sel ect (aMbdel El ement : Foundati on:: Core: : Model El ement |
aMbdel El ement . i sOOLType(Mddel Managenent:: Subsystem) and
aMbdel El ement . i sSt ereoTyped(" ProcessConponent "))

-- the PortProxy in a Conposition
| et def PortProxy : Set(PortProxy) =
ownedEl enent - >sel ect (aMbdel El ement : Foundati on:: Core: : Model El ement |
aMbdel El ement . i sOCLType(Foundati on: : Core: : Cl ass) and
aMbdel El ement . i sSt er eoTyped(" Port Proxy"))

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1la-115

ad/2001-02-19 Part Illa

1. Samples

In the sample figures below, various graphical artifacts of the notation, have been
annotated with an arrow line, and the name of the virtual metamodel element, or
Stereotype, that they represented.

Line and annotation are rendered in blue, when seen in a colour media, or a shade of grey,
when mediais monochromatic.

These lines and annotations are not part of the proposed notation, but rather just intended
help for the understanding of the examples.

7.1 CCA Notation

7.1.1 DocumentModel examples

7.1.1.1 CompositeData definitions

Attribute, typed as CompositeData
DataType PartCode B S
familyNumber: Integer
productNumber: Integer
\/\
Attribute, typed as CompositeData
DataType QuoteRequest
customerName: String
date: Date
time: Time
_—> +part: PartCode
Attribute, typed as familyNumber: Integer
Com positeData productNumber: Integer

Attribute, typed as CompositeData
DataType Quote -
———® customerName: String
date: Date
time: Time

————— P +part: PartCode

Attribute, typed as familyNumber: Integer
. productNumber: Integer
CompOSIteData quantity: Integer
unitPrice: Float
totaPrice: Float

Figure 27 Sample CompositeData definition (CCA)

Illa-116 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

In this example, a CompositeData named PartCode is defined with two slots of information
Attribute, 'familyNumber' and "‘productNumber’, both type with the Integer DataType.

Another two CompositeData named QuoteRequest and Quote are defined, including
Attribute of String, Date, Time and Float DataType, and an Attribute typed as the
PartCode CompositeData specified above.

These CompositeData are used in the specification of the ProtocolMessage in the QuoteBT
RequestReplyProtocol, below.

7.1.2 Protocol examples

7.1.2.1 Choreographed Protocol

CCA notation for Choreographed Protocols is the same as the UML notation for Activity
Graphs — Activity Diagrams, including elements of the notation for State Machines — State
Charts. Please, see Protocol examplesin the UML Notation section of Examples, below.

A dight difference allowed in CCA isthat, to reduce the space used to depict sequences of
Sending and Receiving Signals, the sending symbol and the receiving symbols for the
response, are positioned one immediately under the other, effectively touching the symbol
above. Conversely, the receiving signal symbol, and the send signal symbols for the
possible aternative responses, are positioned one under the other, touching.

Protocol
4% Protocol OrderBT

ProtocolRole buy_role_Order sell_role_Order

o L
(initiator) Start 4 rotocolRole

ProtocolMessages Receiving
ProtocolMgssage

Sending
ProtocolMessage

TerminateSuccegs :

Success

)

-

‘Sending PrqtocolMessages

Failure

TlerminateFailure

Figure 28: Sample Choreographed Protocol (CCA)

This sample of Protocol using the notation for Activity Diagram, specifies, two
ProtocolRoles, buy_role_Order and sell_role_Order, each in its own Partition (swim lane)

of the Activity Diagram.

Therole buy_role_Order isthe initiator, what is shown in its Partition containing the Start
initial State.

Roles exchange the ProtocolM essages Order, OrderConfirmation and OrderDenied, with
the CompositeData of same name. Sending and receiving of the ProtocolMessage is
represented by the UML Symbol for Transitions, Sending and Receiving Signals. A
Sending Symbol in one Partition corresponds to the sending of a Protocol M essage by the

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-117

ad/2001-02-19 Part Illa

ProtocolRole of the Partition. The Sending (Receiving) Symbol is connected to a Class
figure, without compartments, and the name of the CompositeData (or DataType in other
examples) carried as attribute of the Signal being sent. The Class figure located in between
the Partitions and connected to a Receiving (Sending) Symbol in the opposite Partition.

The sequencing of the ProtocolMessage is shown by the consecutive "touching" layout of
the Sending and Receiving Symbols. The two consecutive Sending (Receiving) Symbols
represent alternative candidate responses for the Protocol M essage of the Receiving
(Sending) Symbol immediately above. In more standard UML notation for Activity
Diagrams, the Sending and Receiving Symbols would be located without touching, and
connected by two transition arrows showing two alternate paths of the execution.

Final States, stereotyped as TerminateSuccess or TerminateFailure, are located in the
Partition of the initiator Protocol Role, and represent the alternative candidate outcomes of
the Protocol activity.

RequestReplyProtocol

Protocol QuoteBT

ProtocolRole
(initiator)

TerminateSuccess

buy_role_Quote

sell_role_Quote
Start

ProtocolRole
-«

ProtocolMessages Receiving

ProtocolMessage
— — — — —>QuoteRequesty- — — — -

=

— Quote pp < — — —

Sending

. ProtocolMessage
TeminateSuccess 9

Figure 29: Sample Choreographed RequestReplyProtocol (CCA)

This example of RequestReplyProtocol uses same representation as the Protocol above,
with the noticeable difference that there is only one Sending (Receiving) Symbol after the
Receiving (Sending) one. Indeed, a RequestReplyProtocol is a case of protocol, constrained
specifically to represent this kind of ssmpler interactions.

FlowProtocol

Protocol ShippingNoticeBT

ProtocolRole

Receiving

olMessage
ﬂ _— = ShippingNotice|< —_—— —

Proto

buy_role_Shipping sell_role_Shipping ProtocolRole
Start (initiator)
-

ProtocolMessage

Sending
ProtocolMessage

Te

minateSuccess
Success

Figure 30: Sample Choreographed FlowProtocol (CCA)

I1la-118

This example of FlowProtocol uses same representation as the Protocol and
RequestReplyProtocol above, with the noticeable difference that there is only one Sending
and one Receiving Symbol, one in each Partition. According to its constraints, a
FlowProtocol isthe smpler of the interactions.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

FlowProtocol

R Protocol PaymentNoticeBT
ProtocolRole b e p "
(initiator) uy_role_Faymen sell_role_Payment ProtocolRole
- -~
Start ProtocolMessage
-

Sending Receiving
ProtocolMessage

ProtocolMessage E
> > — — > >| PaymentNoticel— — — —, o

TerminateSuccess

-4

Figure 31: Sample Choreographed FlowProtocol (CCA)

7.1.2.2 Protocol with SubProtocols

CCA notation for Choreographed Protocols is the same as the UML notation for Activity
Graphs— Activity Diagrams —, and State Machines — State Charts. SubProtocols are
represented by ActionStates with the name of the activated SubProtocol.

Protocol
(with subProtocols)
> Protocol Sales_protocol
ProtocolRole buy_Sales_role sell_Sales_role
(initiator) P R ProtocolRole
- ™ Start B —
P buy_role_Quote: QuoteBT 5| sell_role_Quote: QuoteBT |«
SubProto¢olRole) SubProtocolRole
(initiator)
buy_role_Order : OrderBT sell_role_Order : OrderBT
) . [OrderDenied] [OrderConfirmation]
TerminateFailure < — - >
=©/ ProtocolTransitions With guard J/
Fail@uy_role_shipping: ShippingNoticeB'I)%g(sell_role_Shipping: ShippingNoticeB'D:
SubProtocolRole
J/ (initiator)

Guy_role_Payment: PaymentNoticeB'Iji%(sell_role_Payment: PaymentNoticeBO

TerminateSuccesy
Success -

Figure 32: Sample Choreographed Protocol with subProtocols (CCA)

In this example of Protocol with sub-Protocols, the overall activity of the Sales protocol is
specified re-using the more elementary Protocols QuoteBT, OrderBT, ShippingNoticeBT
and PaymentNoticeBT.

For each sub-Protocol, two ActionState are inserted, one in Partition of each ProtocolRole,
corresponding to each of the Protocol Role of the sub-Protocol. In the example, the
OrderBT Protocol is used as sub-Protocol of the Sales protocol. For each of the
ProtocolRolesin OrderBT, an ActionState isinserted : buy _role_Order in the Partition of
buy Sales role, and sell_role_Order in the Partition of sell_Sales role. The represented

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-119

ad/2001-02-19 Part Illa

semantics are that buy_Sales role will play the (sub) role of buy_role_Order, when
executing activity according to the OrderBT Protocol, conversely, the sell_Sales role will
play the (sub) role of sell_role_Order.

The ActionStates corresponding to a sub-Protocol are connected by a Transition arrow,
representing the sequencing dependency between the activity of the initiator ProtocolRole
of the sub-Protocol, and the reactive activity of the other ProtocolRole of the sub-Protocol.

Note the Transition arrow from the ActionState for sell_role_Order, in the Partition for the
ProtocolRole sell_Sales role, is connected to the ActionState for sell_role_Shipping, and
guarded with the expression [OrderConfirmation]. The represented semantics are that : IF
under the activity of sell_role_Order, a Protocol M essage with an OrderConfirmation flows,
THEN the overall activity will proceed with the activity of sell_role_Shipping.

Similarly, a Transition guarded with [OrderDenied] outgoing from buy_role_Order,
connects to the TerminateFailure Final State. The represented semantics is that: |F under
the activity of buy_role_Order, a ProtocolM essage with OrderDenied flows, THEN the
overall activity will terminate with afailure.

7.1.3 ComponentSpecification examples
7.1.3.1 ProcessComponents
ProtocolPort
(for initiator role) ProtocolPort
Buyer) | Seller () |
ProcessComppnent buy ol ProcessComponent

Sale;sfprotocol b Sales_protocol :: ¢
buy_Sales_role sell_Sales_role

ProtocolPort

OffshoreSeller :: Seller ()

ProcessComponent (subtype)

-

sell :
Sales_protocol ::
buy_Sales_role

Figure 33: Sample ProcessComponents (CCA)

I11a-120

In this example of ProcessComponent specification, a Buyer ProcessComponent is
specified, as having a single buy Protocol Port, that realizes the initiator Protocol Role of the
Sales _protocol.

The Seller ProcessComponent is specified with the single sell Protocol Port realizing the
non-initiator Protocol Role of the Sales protocol.

An specialization of Seller, the OffshoreSeller ProcessComponent is introduced here, and
will be referenced in the Contextual Binding example.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Note that no specification is provided about how the ProcessComponent actually perform
the activities of the Protocols realized by their Protocol Ports.

ProtocolPort

Seller_Order (t) | Seller_Quote (t)

ProtocolPort | sell_order_port :
————— P OrderBT::
sell_role_Order

sell_Quote_port :
QuoteBT::
sell_role_Quote

e . - e,
ProcessComponent ProcessComponent
ProtocolPort ProtocolPort
(for initiator role)
Seller_ShippingNotice@l Seller_PaymentNotice@l
sell_ShippingNotice_port : sell_PaymentNotice_port :
ShippingNoticeBT:: PaymentNoticeBT::
sell_role_Shipping sell_role_Payment
—_—» \ <+
ProcessComponent ProcessComponent

Figure 34: Sample ProcessComponents (CCA) - will be used in the ComposedComponent example

These sample ProcessComponent, Seller_Order, Seller_Quote, Seller_ShippingNotive,
Seller_PaymentNotice are specified in away similar to the examples above. They are
defined here for consistency, and will be used in the sample for ComposedComponent.

7.1.4 Composition examples

7.1.4.1 Composition (as a CommunityProcess)

Market

CommunityProgess c .
> onnection

Buyer_usage : Buyer @ | Seller_usage : Seller @ |

ComponentUsage buy : Buyer :: buy sell : Seller :: sell
>

CompanentUsage

A

Port Usage Port Usage

Figure 35: Sample Composition as a CommunityProcess. (CCA)

As an example of Composition, a CommunityProcess is specified, leaving for a later
specific example, the case of a Composition in a ComposedComponent.

In the Market CommunityProcess, two ProcessComponent, Buyer and Seller, are used, and
incorporated in the Composition as Buyer_usage and Seller_usage, respectively.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Illa-121

ad/2001-02-19 Part Illa

The Protocol Port of the used ProcessComponent are incorporated as PortUsage, in their
respective ComponentUsage. Therefore, the Buyer_usage contains a buy PortUsage,
corresponding to the buy Protocol Port of the Buyer ProcessComponent. Similarly, the
Seller_usage contains the sell PortUsage corresponding to the sell Protocol Port of Seller
ProcessComponent.

The buy and sell PortUsage are compatible because each is a use of a Protocol Port
realizing complementary ProtocolRole of the same Protocol. Therefore, the

Protocol M essage that can be sent from a PortUsage can be received from the other, and
viceversa. Thusit is possible to establish a Connection between the two PortUsage, as
rendered in the diagram.

7.1.4.2 ContextualBinding in Community Process

OffshoreMarket : Market

CommunityProcess
(refined)

-

ContextualBinding

Seller_usage = OffshoreSeller =

1

fills bindsTo

Figure 36: Contextual Binding (in CommunityProcess) (CCA)

In this example for Contextua Binding, a specialization OffshoreMarket, of the Market
CommunityProcess above, is specified along with a Contextua Binding.

The OffshoreMarket specifies as its supertype, the previously specified CommunityProcess
Market. The refinement introduced by OffshoreMarket is specified by the
Contextua Binding.

The Contextual Binding is represented in a separate compartment of the OffshoreMarket
CommunityProcess.

Within the OffshoreMarket CommunityProcess, the OffshoreSeller ProcessComponent will

fill the Seller_usage, in the Market CommunityProcess, and will be used rather than the
one originally used in the Market CommunityProcess.

7.1.5 ComponentRealization examples

7.1.5.1 ComposedComponent

Please be advised that in this example, the CCA notation has been abused, to provide to
the reader, directly in the diagram, information that will alow to better trace the elements
in the diagram, to elementsin other related example diagrams, and the elementsin the
Conceptual Meta-Model. The notational abuses are :

Ila-122 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

?? The name of the ComposedComponent is followed by the name of its supertype
Component, asin :

"Seller_composed : Seller”

?? The name of the ProtocolPort is followed by the name of the ProtocolRole that it
realizes, fully qualified with the name of the Protocol (usually the name of the
ProtocolPort is rendered alone), asin :

"sell : Sales protocol::sell_Sales role"

?? The name of each ComponentUsage is followed by the name of the Component

that is being used (usually the name of the ComponentUsage is rendered alone),
asin:

"Seller_Quote usage : Seller_Quote"
"Seller_Order_usage : Seller_Order"
"Seller_ShippingNotice_usage : Seller_ShippingNotice "
"Seller_PaymentNotice_usage : Seller_PaymentNotice "

?? The name of each PortUsageisfollowed by the name of the Port that is being
used, fully qualified with the name of the Component (usually the name of the
PortUsage is rendered alone), asin :

"sell : Seller_Quote :: sell_Quote port"

"sell : Seller_Order :: sell_Order_port"

"sell : Seller_ShippingNotice :: sell_ShippingNotice_port"
"sell : Seller_PaymentNotice :: sell_PaymentNotice port"

?? The PortProxy is shown as adistinct, separate box, has been named, and is
followed by the name of the ProtocolRole that it realizes, fully qualified with the
name of the Protocol (usually the PortProxy is rendered as a small box contiguous
to that of the represented Protocol Port, and the name of the PortProxy is left
anonymous and not rendered), asin :

"buy : SalesProtocol :: buy _Saes role"
?? The elements that pertain to the internal Composition of the

ComposedComponent, has been framed in a box with dotter line border (usually
the boundary of the Composition is not rendered).

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-123

ad/2001-02-19 Part Illa

ComposedComponent

PortProxy

Seller_composed :: Seller

ProtocolPort
R

sell :
Sales_protocol ::
sell_Sales_role

Seller_Quote

Connecti

T Compone
protocolScope:
QuoteBT

on — PortUsage

(from ProtocolPort t

Connection
(with protg

o PortProxy)

ompone

sell : Seller_Order.

Seller_Order_usage :: “L,'Sﬂ

Seller_Order

Sales_protocol :: @ |<
sell : Seller_Quote. :
protocolScope:

buy_Sales_role
—————
sell_Quote_port
OrderBT

colScope)

S —
sell_Order_port
— Ed PortUsage

Com

®|<—

PortUsagé

Seller_ShippingNotice_usage ::)Onentusage

Seller_ShippingNotice

protocolScope:
ShippingNoticeB

sell : Seller_ShippingNotice.

sell_ShippingNotice_port

Com

@F

PortUsa

Seller_PaymentNotice_usage
Seller_PaymentNotice

ponentUsage

protocolScope:
PaymentNoticeBT

sell : Seller_PaymentNotice.
sell_PaymentNotice_port

\ internal Composition of the
ComposedComponent

Figure 37: ComposedComponent (CCA)

Ila-124

In this example, the Seller_composed is a ComposedComponent, specified as a subtype of
the Seller ProcessComponent previously defined in an example above. Therefore, the
Seller_composed is substitutable with Seller, and actually provides a specification of how
will be carried out the activities corresponding to the Protocol realized by the Protocol Port.

Seller_composed has an internal Composition, although it is not separately depicted in the
notation, other than by having the model elements of the Composition located inside the
box figure of the ComposedComponent.

The Seller_composed ComposedComponent has inside (its Composition), a number of
ComponentUsage : Seller_Quote usage, Seller_Order_usage,
Seller_ShippingNotice_usage, Seller_PaymentNotice usage, each corresponding to uses of
the predefined ProcessComponent : Seller_Quote, Seller_Order, Seller_ShippingNotice,
Seller_PaymentNotice. Each ComponentUsage has PortUsage corresponding to the
Protocol Port of their used ProcessComponent.

The sell Protocol Port of the Seller_composed ComposedComponent provides a pass-
through (or Relay port, un UML-RT terms), such that the internal ComponentUsage can
communicate with the outside of the Seller_composed.

The Composition of the Seller_composed has a PortProxy that represents, within the
Composition, the Protocol Port that may eventually be externally connected to the sall
Protocol Port of the Seller_composed. The PortProxy is named 'buy’, and in fact realizes the

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

ProtocolRole buy_Sales role, conjugated in the Sales_protocol, to the Protocol Role
sell_Sales role, realized by the sell Protocol Port of Seller_composed.

Asthe sell Protocol Port, and the buy PortProxy, realize each one of the Protocol Role of the
same Protocol Sales protocol, it is possible to establish a Connection between the sell
Protocol Port and the buy PortProxy. Thisis depicted in the example diagram, with the
usual UML line for associations.

In this example, the designer has chosen a pattern, where the activities for each of the sub-
Protocol, realized by the sell ProtocolPort, is delegated to one internal ComposedUsage. To
accomplish this delegation, the buy PortProxy is linked through a Connection, to the sell
PortUsage of each of the ComponentUsage.

To ensure that only the Protocol Message, corresponding to the sub-Protocol supported by
the each of the PortUsage, is delegated through the Connection, each Connection is fine-

tuned with the protocol Scope taggedV alue. The taggedVaue is set with the name of the
sub-Protocol whose Protocol M essage are allowed to flow through the Connection.

7.1.6 Choreography examples

7.1.6.1 Choreography of a Protocol

Choreography of Protocols have aready been shown in the examples for Protocol, above.
Protocols have been shown in their Choreographed notation, as Activity Diagrams.

See Figure 31: Sample Choreographed FlowProtocol (CCA) in page 119, and Figure 32:
Sample Choreographed Protocol with subProtocols (CCA) in page 119.

7.1.6.2 Choreography of a ProcessComponent

The previous examples of ProcessComponent have a single Protocol Port, and the example
of Choreography would not be quite illustrative. As the subject for the example of
Choreography in a ProcessComponent, a new ProcessComponent is specified, with a
number of Protocol Port.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1la-125

ad/2001-02-19 Part Illa

ProcessComponent
—————— | Seller_delegator :: Seller

ProtocolPort [sel: buy_Quote_port
—— P Sales_protocol :: : QuoteBT::
sell_Sales_role buy_role_Quote

buy_Order_port :
OrderBT:: ProtocolPort

buy_role_Order (for initiator roles)

ProtocolPort buy_ShippingNotice_port
——— | : ShippingNoticeBT::
buy_role_Shipping

buy_PaymentNotice_port :

PaymentNoticeBT::
buy_role_Payment

Figure 38: ProcessComponent for example on Choreography of ProcessComponent (CCA)

In this ProcessComponent, the designer has chosen a pattern, where a Protocol Port realizes
the sell_Sales role of the Sales protocol, and a number of Protocol Port realize the buyer-
side Protocol Role, of each of the sub-Protocol of the Sales protocol.

The ProcessComponent will delegate into external ProcessComponent, the activities
corresponding to each of the sub-Protocol.

ProcessComponent Seller_delegator

sell buy_Quote_port | buy_Order_port | buy_ShippingNotice | buy_PaymentNotice
_port _port

buy_role_Quote:
QuoteRequest
buy_role_Order :
Order OrderBT
[OrderDenied]
OrderDenied [OrderConfirmation]

Failure
3 : buy_role_Shipping:
< OrderConfirmation i ShippingNoticeBT '
[

ShippingNotice

buy_role_Payment:
PaymentNoticeBT

PaymentNotice

Success@l

Figure 39: Choreography of ProcessComponent — with sub-Protocols (CCA)

Ila-126

The Choreography of the Seller_delegator ProcessComponent, expressed as an
ActivityGraph, specifies the order in which Protocol M essages will be received and sent,

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

and when will be activated the Protocol, on Protocol Port named as "buy_Xxx_port" (with
"Xxx" being "Quote", "Order", "ShippingNotice" and "PaymentNatice)..

ProcessComponent Seller_delegator
sell buy_Quote_port | buy_Order_port | buy_ShippingNotice | buy_PaymentNotice
’ _port _port
QuoteRequest |—%| QuoteRequest
Quote lé Quote |
E Order
Failure
OrderConfirmation
—
— |
ShippingNotice ShippingNotice |
PaymentNotice % PaymentNotice >
I
I —
—
Success <6/

Figure 40: Choreography of ProcessComponent (CCA)

In this expanded ActivityGraph rendering of the Choreography of the Seller_delegator
ProcessComponent, the Protocols on the buy_xxx Protocol Port have been exploded n their
individual ProtocolMessage, allowing a more direct perception of the sequences of
Protocol M essages that will be received and sent through each Protocol Port.

7.1.7 High level ActivityGraph of a Composition

A UML ActivityGraph can be used to provide an aternate representation of the
Composition.

The Composition subject of this sample High Level Activity Graph, isthe internal

Composition of the ComposedComponent described in Figure 37: ComposedComponent
(CCA) in page 124.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 Ila-127

ad/2001-02-19 Part Illa

b Seller_Quote_ Seller_Order_ Seller_ShippingNotice | Seller_PaymentNotice
y usage usage _usage _usage
o
Sales_buy
J/ \\
/ \
J” \\\
g gy
| Order_buy \‘ Order_sdl

anc

| \

\ ‘ ga»m/wm
‘)

[@

“ ShippingNotice_buy)<—
|

[Order&sni/irmation]
ShippingNotice_sdl)
o - -/
\ PaymentNotice_buy i

‘3 PaymentNotice_sell
\\ J’ /

\)

Figure 41: High Level ActivityGraph of Composition (CCA)

In this expanded ActivityGraph rendering of the Choreography of the Seller_delegator, a
Partition (swim-lane) has been created for

7.2 UML Notation
7.2.1 DocumentModel examples
7.2.1.1 CompositeData definitions
Standard UML Class diagrams are used to represent the structure of Protocol M essage
information payload. Attributes are rendered in their usual compartment. Note that slots of
CompositeData within a container CompositeData Class, is done as Attributes, and not
through Associations.
<<CompositeData>> <<CompositeData>> <<CompositeData>>
PartCode QuoteRequest Quote
familyNumber : Integer customerName : String customerName : String
productNumber : Integer date : Date date : Date
time : Time time : Time
part : PartCode part : PartCode
quantity : Integer quantity : Integer
unitPrice : Float
totalPrice : Float
Figure 42: Sample CompositeData definition (UML)
I11a-128 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

71.2.2

changes on ad/2001-02-19 Part llla

Protocol examples

7.2.2.1 Protocol,RequestReplyProtocol, FlowProtocol

Protocol, ProtocolRole and Protocol M essage can be rendered in UML both as Class
diagrams — a purely structural representation — and as ActivityGraphs, where their
Choreography is also represented.

The UML representation of Protocol, Protocol Role and Protocol M essage, as Class
diagram, is done according to the standard UML notation of the baseClass of their defined
Stereotypes.

Note that some tools do not fully support a notation for Reception BehavioralFeature. To
overcome this limitation, the compartment and specification for Operation
BehavioralFeature is used instead. The Protocol M essage becomes an Operation, with the
name of the Operation corresponding to the name of the ProtocolMessage. An argument of
the Operation (in this case with the chose name of 'payload’), servesto capture a reference
to the CompositeData attribute of the Reception's Signal.

<<Protocol>>

OrderBT
<<ProtocolRole>> <<ProtocolRole>>
buy_role_Order sell_role_Order
initiator = TRUE initiator = FALSE
<<ProtocolMessage>> orderConfirmationMsg(payload : OrderConfirmation) <<ProtocolMessage>> orderMsg(payload : Order)
<<ProtocolMessage>> orderDeniedMsg(payload : OrderDenied)

Figure 43: Sample Protocol (UML)

<<RequestReplyProtocol>>
QuoteBT

<<ProtocolRole>> <<ProtocolRole>>
buy_role_Quote sell_role_Quote

initiator = TRUE

initiator = FALSE

<<ProtocolMessage>> quoteMsg(payload : Quote) <<ProtocolMessage>> quoteRequestMsg(payload : QuoteRequest)

Figure 44: SampleRequestReplyProtocol (UML)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-129

ad/2001-02-19 Part Illa

<<FlowProtocol>>

ShippingNoticeBT
<<ProtocolRole>> <<ProtocolRole>>
buy_role_Shipping sell_role_Shipping

initiator = FALSE initiator = TRUE

<<ProtocolMessage>> shippingNoticeMsg()

<<FlowProtocol>>
PaymentNoticeBT

<<ProtocolRole>>
buy_role_Payment

initiator = TRUE initiator = FALSE

<<ProtocolRole>>
sell_role_Payment

<<ProtocolMessage>> paymentNoticeMsg(payload : PaymentNotice)

Figure 45: Sample FlowProtocol (UML)

The UML rendering of a Choreographed Protocal is an ActivityGraph. The CCA
representation is very similar, with just a small space saving variation. Please see
Figure 28: Sample Choreographed Protocol (CCA) in page 117, and immediately
following RequestReplyProtocol and FlowProtocol examples.

Protocol
4% Protocol OrderBT

ProtocolRole buy_role_Order
(initiator)

sell_role_Order

fProtocolRole
> Start .

Sending Receivijng
ProtocolMessage ProtocolMessage

> —_— = Order |7 ””” -

ProtocolMessages

& — OrderConfirmation|<7

TerminateSuccess

> Success

TerminateFailure
Failure

Figure 46: Sample Choreographed Protocol (UML)

111a-130 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

Protocol QuoteBT

buy_role_Quote sell_role_Quote

_———— 7>|QuoteRequestF _—— 75

e e <]

Figure 47: Sample Choreographed RequestReplyProtocol (UML)

Protocol ShippingNoticeBT

buy_role_Shipping sell_role_Shipping

\3 - — 4ShippingNotice —_—— —

Protocol PaymentNoticeBT

buy_role_Payment sell_role_Payment

_— ‘>|PaymenINotice|— - ’ZI

Figure 48: Sample Choreographed FlowProtocol (UML)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1la-131

ad/2001-02-19 Part Illa

1: orderMsg(Order)
: buy_role_Order > : sell_role_Order

<—
2: orderConfirmationMsg(OrderConfirmation)

<—
3: orderDeniedMsg(OrderDenied)

1: quoteRequestMsg(QuoteRequest)
: buy role_Quote > : sell_role_Quote

<—
2: quoteMsg(Quote)

buy_role_Shipping sell_role_Shipping
<—

1: shippingNoticeMsg(ShippingNotice)

1: paymentNoticeMsg(PaymentNotice)
—

: buy_role_Payment

sell_role_Payment

Figure 49: Sample Protocol, RequestReplyProtocol, FlowProtocol (UML Collaboration view)

See above a sample rendering of Protocol as Collaboration diagrams (classifier level). The
Protocol must be aready specified in its structural, and optionally the Choreography
ActivityGraph form.

Note that no additional information is added to the specification of the Protocol, and that
some partial ordering of ProtocolMessage, that can be expressed by the Choreography
ActivityGraph, can not be expressed completely by the mechanisms available in UML
Collaborations.

7.2.2.2 Protocol with SubProtocols

See below arendering of the Protocol Sales_protocol, with sub-Protocol. Aggregation
notation is used to represent the nesting of SubProtocol Role, within the Protocol Role of the
top-level Protocol.

The inheritance of the SubProtocol Role, from the Protocol Role of the sub-Protocol, is made
explicit in the diagram below.

I1a-132 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

<<Protocol>>
Sales_protocol
(from Sample091)
<<ProtocolRole>>
sel_Sales_role | |)

<<ProtocolRole>>
buy_Sales_role

) ’

<<RequestReplyProtocol>>
QuoteBT
rom Sample091)

<<SubProtocolRole>> <<ProtocolRole>>
—1 buy_subrole_Quote buy_role_Quote

<<SubProtocolRole>> <<ProtocolRole>>
[| sell_subrole_Quote — sell_role_Quote

<<Protocol>>
OrderBT

<<SubProtocolRole>> <<ProtocolRole>> |g516091)
— buy_subrole_Order > buy_role_Order

<<SubProtocolRole>> <<ProtocolRole>>
[| sell_subrole_Order sell_role_Order

<<FlowProtocol>>
ShippingNoticeBT
<<ProtocolRole>> | Sample091)

<<SubProtocolRole>>
— buy_subrole_Shipping [> buy_role_Shipping

<<SubProtocolRole>> <<ProtocolRole>>
sell_subrole_Shipping sell_role_Shipping

<<FlowProtocol>>

entNoticeBT
| | <<SubProtocolRole>> SIS Sample091)
buy_subrole_Payment] buy_role_Payment P
|| <<SubProtocolRole>> <<ProtocolRole>>
sell_subrole_Payment > sell_role_Payment

<<access>>

Figure 50: Sample Protocol with SubProtocols (UML)

The UML rendering of a Choreographed Protocol with sub-Protocol is an ActivityGraph,
with ActionState representing the activation of sub-Protocol. Its representation in CCA is
identical to the standard UML ActivityGraph. Please see Figure 32: Sample
Choreographed Protocol with subProtocols (CCA) in page 119.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-133

ad/2001-02-19 Part Illa

A Protocol with sub-Protocol may be rendered in an ActivityGraph representation where
the flow of ProtocolMessage in the sub-Protocol are exploded and made explicit in the top
level Protocol. While thisis not an encouraged practice, it may be sometimes useful, for a
more immediate perception of the overall ProtocolMessage involved. Following is a sample
of such an exploded view of sub-Protocol.

Protocol Sales_protocol

buy_Sales_role sell_Sales_role

é _— — 7>|QuoteRequesll» 77777 %

— — 4| OrderDenied |<7

Failure

\3 _—— —'Ordercanfirmationlé - ’C

[& Fmmaicde ———]

>— — — 7>|Paymen1Notice|7 _—— E

Success

Figure 51: Sample Choreographed Protocol with exploded SubProtocols (CCA)

I11a-134 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

1: orderMsg(Order)

4: paymentNoticeMsg(PaymentNotice)

—>

buy_Sales_role

2: orderConfirmationMsg(OrderConfirmation)
3: shippingNoticeMsg(ShippingNotice)

sell_Sales_role

Figure 52: Sample Protocol with SubProtocols (UML Collaboration view)

7.2.3 ComponentSpecification examples

7.2.3.1 ProcessComponents

ProcessComponent specifications can be rendered using conventional UML Class
diagrams. Stereotyped Port Classes are shown within the frame of their container
Stereotyped ProcessComponent Subsystem.

In the sample diagram below, the ProtocolRole realized by the Port is shown, and the
realization relationship made explicit with the standard Generalization notation.

I

<<ProcessComponent>>
Buyer

R

<<ProcessComponent>>

Seller

<<ProtocolPort>>
buy
(from Buyer)

<<ProtocolPort>>
sell
(from Seller)

<<access>>

<<acgess>>

Wy
\!/
\/

<<Protocol>>
/ Sales_protocol V

<<ProtocolRole>>
buy_Sales_role

<<ProtocolRole>>
sell_Sales_role

Figure 53: Sample ProcessComponents, with PropertyDefinitions, and Protocol Ports (UML)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-135

ad/2001-02-19 Part Illa

<<RequestReplyProtocol>>

—‘ <<access>> <<ProtocolRole>> QuoteBT
<<ProcessComponent>> . bl role Quote.|(rom Sampleog1)
Seller_Quote _role_|

<<ProtocolPort>>
sell_Quote_port

<<ProtocolRole>>
sell_role_Quote

77777777777777777777777777 <<Protocol>>
OrderBT
<<access>>
<<ProcessComponent>> > (from Sample091)
Seller_Order
<<ProtocolPort>> <<ProtocolRole>>
sell_Order_port sell_role_Order
777777777777777777777777777 e <FlowProtocol>>
<<ProtocolRole>> 5. ;
<<ProcessComponent>> <<access>>) 6 S shippingNoticeBT
Seller_ShippingNotice = - = from Sample091)
<<ProtocolPort>>
sell_ShippingNotice_port (.| <<ProtocolRole>>
" sell_role_Shipping
1 <FlowProtocol>>
<<ProcessComponent>> <<access>> | <<ProtocolRole>> . 1 oniNoticeBT

buy_role_Payment

Seller_PaymentNotice from Sample091)

<<ProtocolPort>>

sell_PaymentNotice_port ;.| <<ProtocolRole>>
~~ sell_role_Payment

Figure 54: Some components for the ComposedComponent example (UML)

7.2.4 Composition examples

7.2.4.1 Composition (as a CommunityProcess)

Composition specifications, as the CommunityProcess below, can be rendered using
conventional UML Class diagrams. Stereotyped PortUsage Classes are shown within the
frame of their container Stereotyped ComponentUsage Subsystem.

I11a-136 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

In the sample diagram below, the ProcessComponent used by the ComponentUsage, and
the Protocol Port used by the PortUsage is shown. The use and represents relationship is
made explicit with the standard Generalization notation.

Note that some tools do not support the UML Subsystem as a first-class model element, but
rather require the designer to use instances of Package, instead, and apply a " subsystem”
Sterotype. A side effect of this workaround is that, as Package are not Classifier, some
tools do not alow creation of Generalization relationships between the ProcessComponent
Stereotype of Package (that should be Subsystem), and the ComponentUsage Stereotype of
Package (that should be also Subsystem). In this case, an easy workaround isto use a
Dependency, from the ComponentUsage to the ProcessComponent, and stereotype the
dependency as 'uses.

<<CommunityProcess>>
Market
<<ComponentUsage>> (from Sample091) <<ComponentUsage>>
Buyer_usage Seller_usage
<<PortUsage>> <<PortUsage>>
buy_usage sell_usage
<<Connection>>

<<access>> / <<access>>
LV |V /
<<ProcessComponent>> 47 <<ProcessComponent>>
Buyer \/ W Seller
(from Sample{ «<protocolPort>> <<ProtocolPort>> MPIE091)
buy sell
(from Buyer) (from Seller)

Figure 55: Sample Composition as a CommunityProcess (UML)

1: orderMsg(Order) 2: orderConfirmationMsg(OrderConfirmation)
: buy_usage :
sell_usage
<—

3: shippingNoticeMsg(ShippingNotice)
L .
4: paymentNoticeMsg(PaymentNotice)

Figure 56: Sample Composition as a CommunityProcess, (UML Collaboration view)

7.2.4.2 ContextualBinding on Community Process

Representation of a ContextualBinding in UML uses the same artifacts and notation than
the standard UML Binding.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-137

ad/2001-02-19 Part Illa

Note that some tools have no direct support for the Binding three-way dependency. A
workaround isto use a purely graphical note artifact, locate it within the frame of the
Composition (or its container ComposedComponent) and reference from the note both the

'fills ComponentUsage, and the 'bindsTo' ProcessComponent.

<<CommunityProcess>>
OffshoreMarket
(from Sample091)

Contextual
Binding 4

rgument |

<<ProcessComponent>>
OffshoreSeller

(from Sample091)

<<ComponentUsage>>
Buyer_usage
(from Market)

<<PortUsage>>

<<CommunityProcess>>
Market
(from Sample091)

<<Connection>>

<<ComponentUsage>>
Seller_usage
(from Market)

<<PortUsage>>

buy_usage

(from Buyer_usage)

sell_usage
from Seller_usage)

<<access>>

\/
Y
<ProcessComponent>>
7 Seller
ple091)

<<ProtocolPort>>
sell

(from Seller)

o

Figure 57: Contextual Binding on CommunityProcess (UML)

I11a-138

Alternatively, a more compact notation could use such a note as a compartment to textually
express by name, the Contextual Binding of the ‘bindsTo' ProcessComponent, to the 'fills
ComponentUsage. Thisis similar to the notational approach used by CCA, for
representation of Contextual Binding.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

<<CommunityProcess>>
OffshoreMarket
(from Sample091)

Contextual Binding
Seller_usage = OffshoreSeller

<<CommunityProcess>>
Market

(from Sample091)

Figure 58: Contextual Binding on CommunityProcess, compact form (UML)

7.2.5 ComponentRealization examples
See aso examples for Composition «profile» Package, section 7.1.4, page 121.
7.2.5.1 ComposedComponent

The UML representation of ComposedComponent in a standard Class diagramis a
combination to the representation of ProcessComponent (see section 7.2.3
"ComponentSpecification examples®, in page 135, above) and Composition (see section
7.2.4"Composition examples' in page 136, above).

An additiona PortProxy stereotyped Classis located within the frame of the
ComposedComponent stereotyped Subsystem. A Generalization relationship is explicitly
used in the diagram below, to express the ProtocolRole that the PortProxy realizes.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-139

ad/2001-02-19 Part Illa

<<ComposedComponent>> ‘
Seller_composed <<access>>
(from Sample091) <<Protocol>>
Sales_protocol
<<PortProxy>> <<ProtocolPort>> <<ProtocolRole>> AMPI <<protocolRole>>
sell_proxy - sell sell_Sales_role buy_Sales_role
<<Connection>>
<<access>>
<<ComponentUsage>>
Seller Order usage <<ProcessComponent>>
- -usag Seller_Order
<<PortUsage>> —{ { <<ProtocolPort>>
—|sell_Order_portUsage sell_Order_port
<<Connectjon>> = |
<<ComponentUsage>> <<access>>
Seller_Quote_usage <<ProcessComponent>>
Seller_Quote
<<PortUsage>> — —{ (|<<ProtocolPort>>
sell_Quote_portUsage sell_Quote_port
<<Connectjon>p>
<<access>>
<<ComponentUsage>> | {ocoomomomiooooo-2 <P c o>
Seller_ShippingNotice_usage rocesst.omponen
Seller_ShippingNotice
<<PortUsage>> —{> <<ProtocolPort>>
1 selizShippingNotice_portUsage > sell_ShippingNotice_port
<<Connegtionp> portUsage
<<ComponentUsage>> ssaccess>>
Seller_PaymentNotice_usage <<ProcessComponer_1t>>
Seller_PaymentNotice
<<PortUsage>> L ’> <<ProtocolPort>>
seli—RaymentNotice_portUsag sell_PaymentNotice_port
g<Connectionz> e_portUsage
Figure 59: ComposedComponent (UML)
I11a-140 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

: sell

2: orderConfirmationMsg(OrderConfirmation)

e

sell_Order_portUsage

1: orderMsg(Order)

/ 3: quoteRequestMsg(QuoteRequest) - sell_Quote_portUsage

<—
4: quoteMsg(Quote)

: sell_proxy

sell_ShippingNotice_portUsage

6: paymentNotibes PaymentNotice) 5: shippingNoticeMsg(ShippingNotice)

| sell_PaymentNotice portUsage

Figure 60: Composition of ComposedComponent (UML Collaboration view)

7.3

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

7.2.6

Choreography examples

7.2.6.1 Choreography of a Protocol

Samples of Choreograpy of Protocol and Process component have already been provided in
UML examples section 7.2.2 "Protocol examples’, in page 129. Other examples, in the
similar (or identical in many cases) CCA notation have been provided in CCA examples
section 7.1.2 "Protocol examples' in page 117.

UML-RT Notation

7.3.1

7.3.2

DocumentModel examples

UML utilizes for the specification of structural message payloads, the standard UML
model elements and notation. Please refer to UML examples section 7.2.1
"DocumentModel examples® in page 128.

Protocol examples

7.3.2.1 Protocol,RequestReplyProtocol, FlowProtocol

Illa-141

ad/2001-02-19 Part Illa

o
«Protocol»
OrderBT

4+ OrderConfirmation ()
4+ OrderDenied ()

s Order ()

«Protocol»
QuoteBT

[mEs] o o
«Protocol» «Protocol»
ShippingNoticeBT PaymentNoticeBT

+pQuote ()

a- ShippingNotice () n- PaymentNotice ()

n- QuoteRequest ()

Figure 61: Sample Protocol, RequestReplyProtocol, FlowProtocol (RT)

7.3.2.2 Protocol with SubProtocols

o
«Protocol»
ComposedProtocol

~nQuote ()

—n OrderConfi mation ()
~nOrderDenied ()

~a ShippingNotice ()

m QuoteRequed ()
- Order ()
mn- PaymentNotice ()

Figure 62: Sample Protocol with messages manual copied from SubProtocols (RT)

7.3.3

ComponentSpecification examples

7.3.3.1 ProcessComponents

«Capsule»
Buyer

2 2

«Capsule»
Seller

. +/ buy : ComposedProtocol

' + / sell : Com po sedProtocol~

Figure 63: Sample ProcessComponents, Class view (RT)

+/ buy

: ComposedProtocol

(1 a

: ComposedProtocol~

Figure 64: Buyer and Seller ProcessComponents, Buyer, Structure Diagrams (RT)

Ila-142

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

«Capsule» «Capsule» «Capsule» «Capsule»
Order_seller Quote_seller Pay ment_seller Shipping_seller
. +/ sel_orer : OrderBT~ . +/ sell_quote : QuoteBT~ ' + / sell_payment : PaymentNoticeBT~ . + / sel_shipping : ShippingNoticeBT

Figure 65: Some components for the ComposedComponent example, Class view (RT)

. ﬁ + / sell_payment
: PaymentNoticeBT~

[+/ sell_quote E +/ sell_shipping
[+ / sell_order : QuoteBT~ : ShippingNoticeBT
: OrderBT~

Figure 66: Order_seller, Quote seller_Payment_seller, Shipping_seller: Structure Diagrams (RT)

7.3.4 Composition examples

7.3.4.1 Composition (as a CommunityProcess)

/ buyer_abstractR1 : Buyer / seller_abstractR1 : Seller
-1
+/buy +/ll
: ComposedProtocol : ComposedProtocol~

Figure 67: Sample Composition as a CommunityProcess. Sructure Diagram (RT)

7.3.4.2 ContextualBinding on Community Process

/ buyer_abstractR1 : Buyer / seller_abstractR1
: Seller_concrete

+/ buy +/ =ll
: ComposedProtocol : ComposedProtocol~

Figure 68: Specialized Composition (RT)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-143

ad/2001-02-19 Part Illa

Ila-144

7.3.5 ComponentRealization examples
See aso examples for Composition «profile» Package, section 7.1.4, page 121.
7.3.5.1 ComposedComponent
/ quote_sellerR1
: Quote_seller
. / sell_quote
: QuoteBT~
/ seller_subprotocols_adapterR1 /oder_sellerR1
: Seller_subprotocols_ada pter : Order_seller
1 +/sell_order
+/ sell_quote : OrderBT~
: Quote BT
] +/ sell_order / shipping_sellerR1
- ¢ : OrderBT : Shipping_seller
+/ sell +/ sell L
: ComposedProtocol~ : ComposedProtocol~ ; ;r{i:?ilﬁzm?clzgs-r
+/ sell_shipping ’
: ShippingNoticeBT~ L
+ / sell_payment / payment_sellerR1
: PaymentNoticeBT : Payment_seller
| + / ¢ll_payment
: PaymentNoticeBT~
Figure 69: ComposedComponent (RT)
7.3.6 Choreography examples

7.3.6.1 Choreography of a Protocol

UML-RT utilizes the State Machine model elements, and StateChart notation, to specify
the sequence of interactions in a protocol. Specifications similar to the onesreferred in the
CCA and UML example sections should be applicable in the UML-RT.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

8.

changes on ad/2001-02-19 Part llla

Proof of correctness

To prove that the Virtual metamodel can be used to construct model instances, properly
expressing the concepts in the Conceptual Meta-Model, using the UML baseClasses and
their relationships.

A number of collaboration diagrams, at the instance level, are presented bel ow.

These are instances (M 1) of the Virtual metamodel UML classes and stereotypes (M2).
The examples presented in Section 7 —"Samples' in page 116, are rendered here.

For each model element in the examples — whether classifier, relationship or feature- a box
isincluded in the diagram. For each metarelationship between metamodel elements, aline
isincluded in the diagram.

The author apologizes, if role names are difficult to read, or obscure parts of the diagram.

The author was unable to re-position role name texts in the diagram, for improved
legibility.

8.1.1 DocumentModel proof
Quote : QuoteRequest :
CompositeData CompositeData
SR (GRgd
ghihe ‘L e SR
owne *{ customerName : Attribute }7 String : DataType *‘ customerName : Attribute %‘i‘@i }
featur {ordered} type type {ordered} - feature
ﬂor ered} date : Attribute Wf date : Attribute Hepda'ed}
eature {ordered} type type {ordered} featyre
{grderet time : Attribute Time : DataType *‘ time : Attribute
fepture {ordered} type type {ordered}
{ordered}
{Ofd@aﬂ)”;‘ quantity : Attribute —__Integer : DataType quantity : Attribute wlu#tﬂm
{ordézatre {ordered} type type {ordered}
7‘ unitPrice : Attribute — Float : DataType
{ordéeati}re {ordered}—type
| totalPrice : Attribute{mdigred} type
{ordéeati)re {ordézetre
7‘ part : Attribute — Csﬁngsoi?eelj:ata — _part : Attribute }**7
CompositeData
{ordered} type type {ordered}

BWhEl

feature

feature
{ordered}

‘ familyNumber : Attribute ‘

‘ productNumber : Attribute ‘

Figure 70: CompositeData (M1s)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

I11a-145

ad/2001-02-19 Part Illa

8.1.2 Protocol proof

8.1.2.1 Protocol, RequestReplyProtocol, FlowProtocol

Order :
CompositeData

orderMs
ProtocolMessage
owner feature S e

{ : Attribute
ner featur {ordered}
{ordered} \

{ordered}

type

— context™._
OrderBT : Protocdhanespace context,

,,,,,,,,,,,,,

i]
I !
—owner feature

{ordered}
{ordered} raisedSignal
~._feature N
™ \ {ordered}
r eception signal 7~ type typey
| orderD . fecen gnaly : Signal |] : Attribute | P ypel
| | 1 1 | f
| _ProbmiMessage | L o feature |
{ordered}
- s — r 1
| | buy_rol | : signal| | ! | QuoteRequest : |
y_role_Quot | gnal | | |
| —definedTag— ProtocolRole | i i ! }) | Composi |
- = Teception signal L« owner feature. fordered) type == POSTEAE,
- - . ordered;
wnedElement {ordered) > { ’
context™.
namespace
ownedElemgg] 1o Guore - | | Attribute | | Quote
| Protocc i ! | | | CompositeData |
t==rotocolRole | o\ ner —owner feature: fotdered} type L= [l I
{ordered} {ordered}
q — e T T] [P 7
\sell_role_Shippingg 1 ishippingNoticeMsg | L | | | ShippingNotice : |
{ w ~definedTag— Role| T . I = 1 I !) | CompositeData |
3 owner = signal L owner feature {atdered} type - e}
{ordered} {ordered}
namespace
; —
°W”edE|e"i'lﬁW_vole_Shippmgi
t
Ibuy_role_Payment] |_: signal| | Awibute | {PaymentNotice : |
N | | i ! | : | B
—~definedFag— — ! i | ! | CompositeData |
+owner signal L owner feature. { ed} typet:
{ordered} {ordered}

ul
]
=
)
=3
S
Is]
=2

ownedEle EEﬂ_mle_Paymemi

|
|
e

Figure 71: Sample Protocol, RequestReplyProtocol, FlowProtocol (M1s)

Ila-146

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

8.1.2.2 Protocol with SubProtocols

sell_Sales_role
I

type

type
type

—connection
ssociationEnd

]

type |

client client
namespace™~__
ownedElemg sales_role : N
e
type
type

type !

client

clientDepenglency

defandTag

type type

buy_role_Order :

=

L

ProtocolRole

tlency

typel

specialization

parent ProtocolRole

definedTag

buy _role_Quote :
ProtocolRole

WwnedElement

RequestReplymw}ace

specialization

specialization—-
P ?'1 AssociationEnd

_Isupplier supplierDepi \
namespa — 7 B
owﬁeﬁgjgmesellfro\eiQuote Stereotype
| ProtocolRole \
parent L \
~stereotype
!
definédTag
sell_role_Shipping 7
Notice : FlowRole i gpenglenc
parent) extendedElt:fQﬁmP y
ShippingNoti

FlowProtocol

namespace.

: Generalization

typ
‘ : SubProtocolRole \»7”

OWEquﬂﬁme\eishipping

i .| Notice : FlowRole

peciali
8

efingdTag

‘ buy_role_Payment

‘ : SubProtocolRole %

: Generalization |
i
]

| Notice : FlowRole

ofnedElement

PaymentNotiqeBilespace
FlowProtocol T

uppligupplierDep

namespace-~._

on

sp

ownedEleiNedie_payment
: FlowRole
parent

Figure 72: Sample Protocol with SubProtocols (M1s)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

Ila-147

ad/2001-02-19 Part Illa

8.1.3 ComponentSpecification proof

8.1.3.1 ProcessComponents

specgialization

\s‘upplier /'
paren \ supplier parent

; 1 —

| sell_Sales_role : | Sales _protocol : buy_Sales role : . initiator=true
| pre fre— T T | finedT-al
|___ProtocolRole | Protocol ProtocolRole

! mhesy 1edElement namespavaedElement————————

Figure 73: Sample ProcessComponents, with PropertyDefinitions, and Protocol Ports (M1s)

I11a-148 A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

isInitiator=true § buy_role_Order :
””” defmeeﬁag————j ProtocolRole

— ownedElement
| OrderBT : Protocol pamespace

extendedElement

| clientDependency —
| I namespace -
| Seller_OrderSient | sell_Order_port : _: Generalization | ownedElemefg!l_role_Order:
5‘ ProcessComponent ProtocolPort o ProtocolRole
| f oidement——————— childeneralization pecialization parent
islnifabor=true ed buy_role_Quote :
e definedTag—— ProtocolRole
| supplier " ownedElement

QuoteBT : Protocol namespace

clientDependency T
- Ramespace
Seller_Quogdient | sell_Quote_port : : Generalization ownedElJenjensell_role_Quote :
_ProcessComponent ProtocolPort) . ProtocolRole
r oddement———————— childeneralization specializaton parentt--——————
N isIniator=true § sell_role_Shipping
N ~definedTag | Nofice : FlowRole
stereotype,
| N lierDependenc supplier — - =
stereotype A r 2 Dependenc?uﬁ'—)———— P y pRlier | ShippingNoticeBT :

| FlowProtocol

extendedElement) g
\ clientDependency

| | Seller_shippingRgRle : | |sell_ShippingNotice_port: | _: Generalization o __| buy_role_Shipping
{ __ProcessComponent _ | ProtcolPort o Notice : FlowRole
\ AEART rent gelnitgtalization pecialization parent

\ isInitiator=true § buy_role_Payment
‘ _Notice : FlowRole

\ -
|
|

oD g <uonlior " ownedElement
| supplierbependency PP PaymentNoticeBT : namespace

FlowProtocol

extendedElement

clientDependency L epace

; namespace T

Seller_PaymentNbtiot: | | sell_PaymentNotice_port | : Generalization ownedElem&§{!_role_Payment

. : ProtocolPort Lol o : FlowRole
nawWrESBEkEETTeTTt gehiddalization cialization parent

Figure 74: Some components for the ComposedComponent example (M1s)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-149

ad/2001-02-19 Part Illa

8.1.4

Composition proof

8.1.4.1 Composition (as a CommunityProcess)

extendedElement stereotype
: Dependency ———cfientBependency access : Stereotype —| _: Dependency
T stereotype _extendedEfement
[— — client clientDependency
ownedElement T ame: e
Space __ Market :
supplierDependenc

Seller_usage :

CommunityProcess

namespace

]

ownedEIemer{t supplierDependenc]|
- namespace ownedEl s—
ComponentUsage S:!ﬁUUS:agee- t ‘ e | couver_lisage
_ComponentUsage

- B paoedElemen ype PortUsage ComponentUsage

child child | ownedElement child child]

e - AssociationEnd | " © Connection

generalizjtion generalization } e

: Generalization

: Gene tion

specialization

upplier
paren

specializgtion

paren paren paren upplier
Erespce
Seller : sell : buy : Buyer :
ProcessComponent d ProtocolPort ProtocolPort

generalizition

: Generalization

specializdtion

o

type
: AssociationEnd ‘ P
aneraIization
nection

Generalization

specialization

ProcessComponent

Figure 75: Sample Composition as a CommunityProcess (M1s)

I11a-150

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

8.1.4.2 ContextualBinding on Community Process

{ordered}
P client
OffshoreSeller : | ument 8 ContexlualBlndmcgwemDePendency OffshoreMarket :
ProcessComponent ‘ CommunityProcess

child child
suppli

generalization generalization

: Generalization : Generalization

specializgtion

specialization

paren

supplierDepegndency
ownedElement namespace

Market :

CommunityProcess
namespace ownedEleme
Seller_usage : sell_usage : buy usagant. € K
ComponentUsage PortUsage | type P veausaock
—p_—ﬂa- X Eletnent PortUsage ComponentUsage
child chlld‘ ..EZW edElefment cehild child
ol m - . t
eneralization .. AssociationEnd | : Conne AssociationEnd] ™ e
g generalization - eneralization generalization
. i o 1]
: Generalization canneetion . : Generalization
Generalization
specialization specialization specialization specialization
paren
paren paren paren paren
lemsptice
Seller : sell : buy : - Buyer :
ProcessComponent b D1 Qt0COIPOTE ProtocolPort _ProcessComponent
suppliﬁr clientDependency supplier
ferDepend __— .
supplierDependency oondedElement stereotype clientDependency supplierDependency
: Dependency access : Stereot [Dependency
stereotype extendedElement

Figure 76: Specializing Composition with Contextual Binding (as a CommunityProcess) (M1s) (as Collaboration)

8.1.5 ComponentRealization proof

See also proof for Composition «profile» Package, section 8.1.4, page 150.

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I1la-151

ad/2001-02-19 Part Il1a

8.1.5.1 ComposedComponent

client

L

ComposedComponent
, client

namgsy
| oWredElemeRge|
El "{énfrolocalPon

client client clientDependency

: Generalization

sell_Sales_role :
ProtocolRole

Sales_protocol :
Protocol

namespa

ownedElement

clientDepenifency

Hency

c\ien&Depémiency

ependency.

childyer
] i)
| | Ger on | Seller_Order :
! | ! ProcessComponent
arent
namespace P namespace
' i
! !
ownedElement ownedElement
type i]
‘
| "
. nildger
ownedElerhent
w i i 1
777777777777777777777777777 | | | _iGer n. | Seller_Quote :
" 1 | | ! ‘ ProcessC 1t
medEl L arent
namespdca P namespace
! '
! !
ownedElerent ownedElerhent
]
ownedElergent sel_Quote_portUsage | | - Ger n | sell_Quote_port :
‘Portusage | - ProtocolPort
. thilge parent
3 type
i
|
!
!
!
!
!
!
ownedElerpent

Seller_ShippingNotice :
ProcessCe it

e\i\er\\dedElemun\

taggedva

extendedElemerit

ownedElerhent

ownedHement

connectibn
!

ownedElenent

ownedElerhent

_| sell_ShippingNotice_port : /
FlowPort /

enmdedE\grﬁem

Dependency

1t I !

dency

i Seller_PaymentNotice :
””””””””””””””””” 1 ProcessCt T
! arent
namespace P namespace
! !
ownedElerent oNnedEIeni‘lem

ociationEnd

Figure77:

\‘\s\lere&ype
.\

stereotype

\st\ereoty- g

ComposedComponent (M1s)

I1a-152

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

8.1.6 Choreography proof

changes on ad/2001-02-19 Part llla

8.1.6.1 Choreography of a Protocol

Order

CompositeData

{ordered} {ordered}
= comexl AN
OrderBT : Protocol namespace conlexf«
| Vi
! namespace A
raissdlSign‘al\
ontext ownedElement sell_role_Order : orderConfirmationMsg : " _: Signal : Attribute @ OrderConfirmation :
Protocol T - ProtocolMessage 7 CompositeData
- wner featute. r epufm signal ner featur {ordered} type
owner /
| {ordered)} 7\ / {ordered}
| 7
| /
! N {ordered} I,//’/
| “feature 7
L N //’/ {ordered}
S signal e type
o _: Attribute @ e P OrderDen d
Com ositeData
feature
ehavior {ordeved)

ontents

der partition

contenty
containgr contents

contents
container contents

container

|-
subvertex;,cd

eBntents

contents
contents

container

outgoint

trigger

T
tfansitions - T
,,,,,,,, | [kind
1 source -
1 ! |#junction
1 |
| A effect - outgoing SOUre8 LT
] 1
poeeeed
transitions | / y
o,e}currence
transitions
. e outgoing
transitiohs subverts sageStep

transitions

Figure 78: Choreography of a Protocol (M1s)

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

I11a-153

ad/2001-02-19 Part Illa

8.1.6.2 Choreography of a Protocol with sub-Protocols

Sales_protocol :
Protocol

namespBagnespace

buy_role_Quote :
ProtocolRole

itation
: Generalization
" : SubProtocolRole|---
————— 1
S| n

buy_role_Order :
ProtocolRole

enera]lza\lon

context
I

Behavior

ownedEler

: ActivityGraph

rtition™.
buy_Sales_role_partition :
Partition

°

Er
Conane:
container

, containpr
' contain
' containgr_
|
|

contairg}

containgr———--

: iteState iti |

contenjs

W”‘(: Initiates }»

SOUTCE Putgoing

|
L conterts—-- r
- ActionState | ‘“ Sub - : ActionState [~
ource putgoing” incomiteyget source
outgoing ___———Hontents |

incoming //i:oh

‘(: TerminateFailure i
f

buy_role Sh\pplng

subProtocol
Notice : FlowRole SubPro\oco\Role F

ole_Payment
FlowRole

transitioy

S ansition
incomirig

TevmlnaleSuccess

outgoirlg

ActlonSIale

|ncommgel

~77"7] _: ActionState
incomiarge contents

dl;,, buy_Sales_role :
ownedElement __ProtocolRole

contents

sell_Sales_role_partition
Partition

: Generalization

-—-| sell_role_Quote :
X Spe ProtocolRole
,,,,,,,,,,,,,,,,,, .
l’subPrmosol LT

-1 sell_role_Order :
NProtocolRole

contefits

nts

sell_role_Shipping
gitootice : FlowRole
: Generalization
content L L
subProtocol L I —|sell_role_Payment
SR e,
e

Figure 79: Choreography of a Protocol with sub-Protocols (M1s)

8.1.7

High Level Activity Graph of Composition proof

8.1.7.1 High Level Activity Graph of a Composition

Figure 80: High Level Activity Graph of a Composition (M1s)

Ila-154

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326

changes on ad/2001-02-19 Part llla

0. References

[UML1.4] OMG Unified Modeling Language Specification, Version 1.4 betaR1,
November 2000, OMG Document ad/ 2000-11-01
http://cgi.omg.org/cgi-bin/doc?ad/00-11-01.pdf

[OORAM] "Working with Objects : the OORAM Software Engineering Method", Trygve
Reenskaugh, Per Wold and Odd Arild Lehne, 1996 Manning Publications Co. 1SBN 1-
884777-10-4 dso by Prentice-Hall ISBN 0-13-452930-8

[ROOM] "Real-Time Object-Oriented Modeling”, Bran Selic, Garth Gullekson and Paul
T. Ward, 1994 John Willey & Sons, Inc. 1SBN 0-471-59917-4

[UML-RT] "Using UML for Modeling Complex Real-Time Systems", Bran Selic,
ObjectTime Limited, Jim Rumbaugh, Rational Software Corporation, March 11, 1998.
http://www.rational.com/media/whitepapers/umirt.pdf

[CATALY SIS] "Objects, Components and Frameworks with UML — The Catalysis™
Approach" Desmond Francis D'Souza and Alan Cameron Willis, 1999 Addison-Wesley
ISBN 0-201-31012-0

A UML Profilefor Enterprise Distributed Object Computing Part |11a — CCA Profile Version O 92 2001-02-2326 I11a-155

