Lesson 2. Types and Transformation

Lesson 2 introduces two of XML's most power ful features — the ability to create user-defined
types, and the ability to transform one document into another document. We'll cover the steps of
defining two document types, and transforming data from one format to the other. The various
stages of the project for thislesson are stored as projects quotel- quote4 in the tutorials
component archive, Lesson 2 folder.

21 TheProblem

2.2 Creating a Document Type

2.3 Transforming One Document Type to Another Document Type
24 MoreonPins

25 Using Types as Ports

2.6 Including Projects

27 Review

2.8 Challenge Yourself

XML (eXtensible Markup Language) is similar to HTML in that you use markup language (tags)
to create documents. Both XML and HTML have evolved from, and are subsets of SGML
(Standard Generalized Markup Language.) XML holds out the promise of revolutionizing
communications by "enabling the universal exchange of intelligent data.”

Rather than treating a document as a monolithic whole, XML lets you separate the data and
structure. This means you can perform processing of data without concern for the appearance of
thedata. And it means that you can readily develop new formats for displaying the content
without worrying about the actual content. Y ou can transform the same set of data from one
format to another, without having to go back to the server for another copy of the data.

XML doesn't just provide a different set of tags from HTML. Instead, it provides a means for
creating extensible, or user defined "tags' as you need them. These tags are specified in DTDs
using element type declarations, which specify the element name, content model (the type of
information it can contain) and the attributes associated with the element.

This ability to specify custom types has many advantages. among them the ability to publish a
"contract” with the users of a component that describes the interface (that is the input and output)
to the component.

In this lesson well deal with the creation of document types, and transformations between
document types. You'll see that Component X Studio relieves you of the chore of hand coding
type definitions, and the XSL or Java code to perform transformations between document types.
Remember that a key feature of XML isthe ability to extend the language infinitely by adding
your own custom types. Also, the document type definitions (DTDs) lay out the structure and
rulesfor the XML, and form a"contract” that others can rely on when developing applications to
interface with yours.

Component X Studio Tutorial Lesson 2 Page 1 © 2001 Data Access Technologies

2.1 The Problem

Consider acompany that offers avery small product catalog of two products -- tennis balls,
which come in white and yellow, and golf gloves, for which there is no choice of color. The
entire catalog is shown in Figure 2-1.

Figure2-1: Sample Catalog

ACME SPORTING GOODS,LTD
2001 Spring Catalog

#1 TennisBalls #2 Golf Glove
Vacuum sealed can of 3. Premium cabretta leather. White only.
Specify color: White, Yellow Onesizefitsall.

The catalog does not contain prices, perhaps because prices are dependent on volume. If you
want to know the price you need to request a quote. The quote request mechanism, which
eventually will be integrated into aweb site, must only include the product number, and the
quantity of interest.

Thus a quote request (written in XML) for agolf gloveis:

<quoteRequest>
<productNo>2</productNo>
<quantity>l</quantity>

</quoteRequest>

A gquote request for 2 cans of tennis ballsis:

<quoteRequest>
<productNo>1</productNo>
<quantity>2</quantity>

</1temRequest>

The actual quote will contain the information provided in the quote request, as well as unit price
and total price (which is quantity * unit price).

So, if the customer requests a quote for a golf glove, we expect the output in XML to be
something like this:

<quote>
<qty>1</qty>
<pno>2</pno>
<unitPrice>15.99</unitPrice>
<totalPrice>15.99</totalPrice>
</quote>

And if the customer requests a quote for 2 cans of tennis balls, we expect theXML output to be
something like:

Component X Studio Tutorial Lesson 2 Page 2 © 2001 Data Access Technologies

<quote>
<qty>2</qty>
<pno>1</pno>
<unitPrice>4.95</unitPrice>
<totalPrice>9.9</totalPrice>
</quote>

The transformation of the quote request document into the quote document involves the
following:

Passing through the product number and quantity.

Somehow looking up the unit price for the product.

Computing the total price (which is quantity * unit price.)

Using different names for the elements of the input and output documents.
Presenting the output elements in a different order than the input elements.

agbrwNPE

In this lesson you will create an application that transforms a customer quote request, (consisting
of aproduct number and quantity) into a completed quote (including quantity, product number,
unit price and total price.)

Thislesson will take you step by step through the transformation, in the process creating
document types, which can be used to enforce the business rules that we want to establish.

2.2 Creating a Document Type

(The completed example for this section is provided as project quotel in lesson 2 folder of the
cXTutorial archive.)

In this section you'll create an application containing a document type, add it to a component,
and explore how it affects the component.

Begin by creating a new project, and saving it in the tutorials archive, lesson 2 folder
using the name quote. Remember to save your work periodically during this lesson to
guard against inadvertent |oss.

2. Inthe new project, create a convenience package for storing your components. Use the New |

New Package menu option, or the &5 button. When the dialog appears, specify the name for the
package as quotePkg and click OK.

3. Now create a new type package, which correspondsto aDTD or schema. It defines a set of
related types. Y ou cannot store type componentsin aregular package.

To create the type package, use the New | New Type Package menu item or the B button. When
the dialog appears, specify the name for the type packages as quoteTypes. Choose quotePkg as
the parent package by clicking onit. Click OK.

Component X Studio Tutorial Lesson 2 Page 3 © 2001 Data Access Technologies

Figure2-2: Createthe quoteTypestype package in the quotePkg convenience package.

Mew Type Package ' % x|
Ea dat
£33 guotePkg
Parent Package
Tvpe Package Hame |qunteTﬁ,rpes| |
uri | |
£ dat
£ guotePky
Extends Type Package
OK Cancel

4. Create atype using the New | New Type menu option or the (D;E) button. When the dialog
appears, expand the Type Package tree and click on the quoteTypes package to select it. Specify

the type name quoteRequest, and the content type composite as shown in Figure 2-3. Composite
types can contain other types. Click OK. The quoteRequest type will appear as shown in Figure

2-4.

Figure 2-3: Createthe quoteRequest type asa composite type in the quoteTypestype package.

x|

£ dat
£ guoteFko

Twpe Package

L)

gquoteTypes

Type Hame |qunteHequeat|

[composite
char

int

float

date

time

1 empty
L= any
mixed

Content Type

OK

Cancel

Component X Studio Tutorial Lesson 2

Page 4

© 2001 Data Access Technologies

Figure2-4: The quoteRequest type.

fquotePkgiquote Tyig™: & ol e

gquateReqguest [lﬁ

Next add an element called productNo to the quoteRequest type by clicking the Add New Type

(+D¥) button. Notice the plus sign, which differentiates this button from the “New Type” button
you have used before. Complete the dialog as shown in Figure 2-5, and click OK. The
guoteRequest type now appears as shown in Figure 2-6.

Figure 2-5: Add a productNo element to the quoteRequest type using the Add New Type dialog.

Add Hew Type El

E3 dat
£ guoteFPky
gquoteTypes

Twpe Package

Twpe Hame |prnducth

[composite
char

int

float
Content Type date

time

Y empty
(=1 any
mixed

1.1 Required
0.1 Optional
1. One ar maore
0. F£ero ar maore

Content Constraint

or In) Yes (@ Mo

Identity 2 Yes @ Mo

OK Cancel

Component X Studio Tutorial Lesson 2 Page 5 © 2001 Data Access Technologies

Figure2-6: The quoteRequest type after adding the productNo element.

IquutePkquuuteTypequunt[}\gleque:n" @ [

guoteRequest [B
productdo 1.4

6. Add another element called quantity, again using the Add New Type (+D¥) button. Complete the
Add New Type dialog as shown in Figure 2-7 and click OK. The quoteRequest type is now
complete, as shown in Figure 2-8.

Figure2-7: Adding the quantity element to the quoteRequest type.

Add Hew Type k El

£3 dat
£ guoteFPky
gquoteTypes

Twpe Package

Twpe Hame |qu antity

[composite
char

it

float
Content Type date

time

Y empty
(=1 any
mixed

1.1 Required
0.1 Optional
1. One ar maore
0. F£ero ar maore

Content Constraint

or In) Yes (@ Mo

Identity 2 Yes @ Mo

OK Cancel

Component X Studio Tutorial Lesson 2 Page 6 © 2001 Data Access Technologies

Figure 2-8: The completed quoteRequest type with productNo and quantity elements.

IquutePkquuuteTypequuuteHEque:n" ﬂ' |E|

guoteReguest [

productto 1.1
guantity 1.1

7. To test the quoteRequest type, use the New | New Component menu option or the = button to
create a new component called quoteApp in the quotePkg package. Add input and output ports
as shown in Figure 2-9 by dragging them from the ports pal ette and dropping them over the
respective margins of you new component.

Figure 2-9: The quoteApp component, with input and output ports.

IquotePkg/quoteApp

8. Resize the quoteA pp component to make it bigger. Drag and drop a quoteRequest type from the
component tree into the center of the quoteA pp component. When you add a type component to
a composite component, the type is placed inside of avariable component, as shown in Figure 2-
10. Rename the variable component to quoteRequest by clicking over the name Cx on the
components tab, typing quoteRequest, and pressing the enter key.

Note that if the quoteA pp component is not big enough, or if you drop the quoteRequest type too
close to the edge of the parent container, you'll end up creating a quoteRequest port. If you

make amistake, just use the undo button (7).

Component X Studio Tutorial Lesson 2 Page 7 © 2001 Data Access Technologies

Figure 2-10: When the quoteRequest typeisadded to the quoteApp, it isplaced in a" constant” component
type, and behaveslikeavariable.

IquotePkgiquoteApp

/ gquotespp 'E\

send ||clear
CH

guoteFequest LA

productdo 1.1
guantity 1.1

Jlsent Jj_cleared

Basequates

9. Position the mouse to the left of the quoteRequest component as shown in Figure 2-11. An input
port will pop out. Drag from thisinput port to the input port for the quoteApp component. The
two input ports will be wired together.

Figure2-11: When the mouse hovers along the edge of the quoteRequest document, an input port will pop
out.

fquotePKg/quoteApp -

/ gquatetpp 'E\

ﬁaend (n)clear

fquoteRequest
! \
guoteRequest [B

productio 1.1
gquantity 1.1

Jlsent chleared

Component X Studio Tutorial Lesson 2 Page 8 © 2001 Data Access Technologies

10. Repeat the previous step positioning the mouse on the right side of the quoteRequest component
to pop out an output port.. Drag from the pop out output port to the quoteApp output port to wire
the two ports together, as shown in Figure 2-12.

Figure2-12: Wiring the quoteRequest component to the input and output ports.

lquotePKgiquotepp

/ quatetop 'E\

(l-‘)SEFId T‘)clear

J-"qunteHequest ‘lll

guoteRequest G

productdo 1.1
quantity 1.1

Jlsent chleared a

11. Now test the quoteApp by opening both the input and output ports (double click on each, or use
the Open Component (&) button) to open an XML editor for each.

12. To use the tree view mode to edit XML, you simply create a hierarchy of elements using the

buttons on the toolbar. In the input port, click the Element (E) button to create a new root level
element. Change the name to quoteRequest.

13. Click the Child Element (3) button to create an element under quoteRequest. Open the
guoteRequest element by clicking the & sign, and change its name to productNo. Inthe value
column, enter 1.

14. Highlight quoteRequest and click the Child Element (3) button again to create another element
under it, and change its name to quantity. In the value column, enter 2.

The tree structure should appear as shown in
Figure 2-13.

15. Y ou can view the XML generated by clicking the text view (=) button. The text view should
contain the following:

Component X Studio Tutorial Lesson 2 Page 9 © 2001 Data Access Technologies

<?xml version=""1.0" ?>

<quoteRequest>
<productNo>1</productNo>
<quantity>2</quantity>

</quoteRequest>

Figure 2-13: Send the xml from the output component. Nothing appearsin the output component.

ol |

iquotePkgigquotedpp

[guatespp =,

input

utput

send [[clear
guoteRequest

guoteRequest [

productdo 1.1 IquutePkquuuteAppIumpmg

i | P ECIEEL T TIRCEE

Structure Walue

Jlsent chleared

Baseguotesd

fquotePkgiquoteAppAnput - el |

EECREREIICI BE

Structure Walua
@ guoteRequest (v
productio 1
quantity 2
K

i

16. Click the Send (%) button. Switch to the output component and you'll see that nothing has

happened. Thisis because the constant component that holds the quoteRequest type does not
send the content through its output port until it receives a Send signal through the Send pin.

17. Totrigger the Send signal, open the Send pin at the top of the quoteRequest component by
double clicking on the send pin or the Open Component menu item on the send pin’s pop-up
T
menu. Click the Send (%) button on the new window being displayed.

18. Now look at the output port. The XML that you sent from the input port has now reached the
output port, as seen in Figure 2-14.

Component X Studio Tutorial Lesson 2 Page 10 © 2001 Data Access Technologies

Figure 2-14: Using the Send button on the send pin to send output from the quoteRequest component.

iquotePKg/quotedpp e E

quot iquotePkg/quote A (=l

: 2
input e

send |[clear
quoteReqguest

guoteRequest [

output

productho 1.4 I iquotePkgiguoteAppioutput

i - G N = || =
e 2D [e (s (=]

Structure e
Jlsent chleared § quoteRequest
X productMo 1
Base.guoted guantity 2

iquotePkg/quote Appinput

(D) [s] [m]m]m]
Structure

@ guoteRequest
productto 1
quantity 2

But what makes this example different from the simple hello example covered in Lesson 1? In
this case, the input passes through a quoteRequest type, so that the only thing that can be output
to the output port is a quoteRequest type. Remember that using Document Type Definitions
(DTDs) creates a"contract” with the world, saying, in this case, that nothing will come through a
guoteRequest output port that is not avalid quoteRequest.

19. You can test this by sending anything other than a valid quoteRequest from the input port. For
example, if you send the XML <test/>, you will get no resullt.

2.3 Transforming One Document Type to Another Document Type

(The completed project for Section 2.3 and 2.4 is quote2 in the lesson 2 folder of the cxTutorial
archive)

In the previous section you learned that a major advantage of using typesis the ability to control
what is output by your component. But what if you want to transform or change the input from
one document type definition to another? For example, we want to take a quote request (product
number and quantity) as input, and output a quote (quantity, product number, unit price and total
price.)

There are many ways that a transformation can be performed, including using XML components,
an expression evaluator, or even a Java component for complex transforms. In this case well
simply map the elements of one type to the elements of another type.

Component X Studio Tutorial Lesson 2 Page 11 © 2001 Data Access Technologies

1. Under quoteTypes, create a new composite type called quote using the New Type
(Dx) button.

The quote document will contain two of the elements that were used in the
guoteRequest type -- productNo and quantity -- but they will be renamed.

Drag the quantity type from the Component Tree to the quote document.

Rename the quantity element to gty by selecting the quantity element within quote document
and then clicking the Rename (B) button.

Drag the productNo type from the Component Tree to the quote document. Renameit to
pno.

. Add two new type elements to the quote type, as defined in Figure 2-15. The resulting quote
type should look like Figure 2-16.

Figure 2-15: Specificationsfor the unitPrice and total Price elements of the quote document.

Type Package Type Name Content Type Content Constraint
QuoteTypes UnitPrice Float 0:1 Optional
QuoteTypes TotalPrice Float 0:1 Optional

Figure2-16: Thecompleted quote document type.

uotePKgiquoteTypes/iquote

guote [

oty 5
pho 14

LinitPrice 0.1
TotalPrice 0.1

Drag and drop the quote document type from the Component Tree into the quoteApp
component and rename it to quote.

. Since the goal isto output the quote document, not the quoteRequest document, delete the
wire between the quoteRequest output port and the quoteApp output port. (To delete the

wire, click on it to select it, and then click the Delete (X-) button.)

Now wire the quote output port to the quoteApp output port by dragging from one port to the
other.

Component X Studio Tutorial Lesson 2 Page 12 © 2001 Data Access Technologies

9. Next you need to wire the two type components together. However, since the quoteRequest
only outputs a quoteRequest document type and the quote type only accepts as input a quote
document type, you cannot just link the quoteRequest output port to the quote input port.
Instead, you need to wire the individual elements together.

10. Drag from the pop out output port next to the productNo in the quoteRequest component to
the pop out pno input port in the quote component.

11. Repeat the previous step for the quantity element. The result should appear asin Figure
2-17.

Figure 2-17: The quote document is added to quoteApp, and wired to the quoteRequest document and the
output port.

quotePKkgiquoteApp

[guatespp B2

output

send |clear send |fclear
quoteRequest fquote

guateReguest [0 fuote |

productto 1.1 oty 14
guantity 1.1 pno 14
LnitPrice 0.1

4 TotalPrice 0.1

Jlsent Jlu:leared

J'I_sent chleared

Basegquotedpp

12. Notice that the unitPrice and total Price elements are not wired. But, since these were
defined as optional fields, sending avalid quoteRequest into the application will generate a
valid quote out. (That is, all the rules of the document type definition have been satisfied.)

13. Test the transformation by opening the quoteA pp input and output ports and sending the xml
shown. (Remember you can load grl.xml to save typing.) Don't forget to trigger the send
event in both the quoteRequest and quote documents, or you will get no output. The output
should appear asin Figure 2-18.

Pay particular attention to the name of the outer XML element -- it was quoteRequest in the
input, and quote in the output.

Component X Studio Tutorial Lesson 2 Page 13 © 2001 Data Access Technologies

Figure2-18: Generating output requiresthat you issue sends from the input port, the quoteRequest send pin,
and the quote send pin. Notethe output document isin a different format than the input for mat.

quotePkgiquoteApp

! guotetpp B2

input
send [clear
quoteReguest

send [clear
quote

guoteRequest L= guote [
producthlo 1.1 oty 1.1
quantity 1.1 pno (e
UnitPrice 0.1
e

iquotePkg/quoteApp/input g E iquotePKgiquoteAppioutput

=u & EEes nel = H DEE b EEan Jaelx =

Structure Walue Structure Walue
@ quoteReguest [@ guote
producto 1 oty 2

gquantity 2 pn

2.4 More on Pins

Thereis till more to do to complete the quote application but, before continuing, alittle more on
pinsisin order. Completing the following steps will mean that you won't have to manually send
signals to the quoteRequest and quote documents.

A component uses a pin when the pin acts as an output device through which the component
signals the outside world that an event, such as a send or areceipt, has occurred.

A component provides a pin that the outside world can use to trigger an event (such as a send.)

Figure 2-19 shows a component that has an "input” pin called provides and an "output" pin
called uses.

Figure 2-19: A component with provides and uses pins.

provides

¥ F=

|
luses

Component X Studio Tutorial Lesson 2 Page 14 © 2001 Data Access Technologies

In the previous section you had to trigger a send event in both the quoteRequest and the quote
components. You can wire the Sent pin of the quoteRequest component to the Send pin of the
guote component. Then when the quoteRequest sends output, it automatically signals the quote
component.

1. Tryit by wiring the quoteRequest sent pin to the quote send pin, as shown in
Figure 2-20.

T
2. Then click the Send (% button on the input port component, and the Send button
on the quoteRequest send pin. Thistime you won't have to click the Send button on the
guote send pin. The quote document will appear in the output window.

Figure 2-20: Wirethe quoteRequest sent pin to the quote send pin.

fquotePkgiquoteApp -

! quoterpn €2

Wsend Fclear send [clear
J-'rqunzuteﬁequest]'-l guote

gquoteReguest [guate [

productila 1.1 1 oty 1.1
guantity 1 pno 1.1

UnitPrice 0.1
Jl}e’nt chleared

r B TotalPrice 0.1

Jlsent chleared

3. Variables can be configured to automatically send upon receiving input. To configure a
component, open a components property window by selecting the component and then

clicking the Properties () button. Open the property window for the quoteRequest
component and set the sendOnReceipt property to yes as shown in figure 2-21.

Component X Studio Tutorial Lesson 2 Page 15 © 2001 Data Access Technologies

Figure 2-21: Setting the sendOnReceipt property.

IquotePkgiquoteApp

! quotespp B2
Fsend Fclear

fouoteRequest }

send (clear
fuote

guote | o
23 b 44
Properties for quoteR equest 5'

sendOnReceipt | ® Yes|) No

gquoteRequest [0

productio 1.1
quantity 1

Jl}e’nt chleared

clearOnSend (O Yes @ Mo

0K Cancel

4. Now try sending the xml again from the input port. The output report displays the quote
document without you having to perform amanual "send" on either of the Send pins.

2.5 Using Types as Ports

(The completed project for this section is quote3 in the lesson 2 folder of the cxTutorial archive)
Earlier in this lesson we mentioned that you needed to drop a document type in the center of a
composite component or you would create a port instead of a"variable." Now we are going to
experiment with using document types as ports.

1. Deletethe input and output ports on quoteApp by clicking to select them, and then
using the . button.

2. From the Component Tree quoteTypes Type package, drag the quoteRequest type
to the left side of the quoteApp component.

Note that the input port is named quoteRequestl. A 1 has been appended since the name
guoteRequest is already taken by the variable component.

3. Rename the qouteRequestl port to be quoteRequestin.

4. Repeat the previous step, this time dragging the quote type to the right side of the quoteApp
component and rename it to be quoteOut.

5. Wirethe new quoteRequestin port to the input port on the quoteRequest document.

Component X Studio Tutorial Lesson 2 Page 16 © 2001 Data Access Technologies

6. Wirethe new quoteOut port to the port on the output port on the quote document. At this
time your quoteApp component should look like figure 2-22.

7. Test the changes to the quoteApp as you did in the previous section. The results will be the
same. However thereisamajor difference. Now what is "exposed” on the quoteApp is a set
of well defined inputs and outputs that form a "contract” with the world. Anyone who wants
to use this component can rely on it only accepting a quoteRequest type as input and only
producing a quote type as output.

Figure2-22: Create portsout of document types by dropping them on the edge of the quoteApp component,
and rewiring.

fquotePkgiquoteApp
! oquotespp B
unteReguestin fuoteCut
send |clear
zend |clear guote
guoteRequest
guate [
guoteReguest =8
oty 1.1
productia 1. pna 11
uantity : unitPrice 0.1
totalPrice 0.1
4
Jl;.e/nt J‘_cleared v
Jlsent ﬂcleared
v
Base:quoteApp ||

2.6 Including Projects

(The completed project for this section is quoted in the lesson 2 folder of the cxTutorial archive)

The quote application still doesn't provide the unit price and total price information. Rather than
build that functionality from scratch, we'll include another project containing a component that
will provide this functionality. The internals that make the included component work is
immateria right now. What isimportant is the interface the components provide, as you will
See.

1. UsetheProject | Include menu option.

2. When the Include dialog appears, select thepricePkg project inthe lesson 2
folder of the cxTutoria archive.

Component X Studio Tutorial Lesson 2 Page 17 © 2001 Data Access Technologies

3. Examine the Component Tree. You'll notice that the new package was added to the root.
Thisis becauseit was originally created in theroot. In the pricePkg package you will find a
lookupPrice component. Y ou will use this component to perform a price lookup in your
quoteA pp Component.

Figure 2-23: Theimported componentswill appear in the pricePkg in the Component Tree.

cxTutorial:Lesson 2.quote2
@ 7 dat
@ B3 guotePky
&= gquoteTypes
@ £5 guotespp
@ 7 |pricePko

q docurments
o Y
& pno

& unitPrice

@ £= |lookupFrice

When you include a project, al components defined in the included project can be
used within the project you are currently editing. However, you cannot edit the
base definitions of the components defined in the included project. When opening
the base definition the component display will be read only.

The core set components supplied with Component X are defined in a set of
projects found within the cx archive. These are separate projects so that you only
need to include those projects that contain the components you need for the
functionality of the components you are writing.

When you create a new project, any projects defined in the Set Default Project
Properties dialog are automatically included. Y ou can add and remove projects
from this default set by using the Options | Set Default Project Properties menu
item. You can add and remove included projects from your project by using the
Project | Properties menu item.

4. Drag the lookupPrice component from the Component Tree to the quoteA pp component.

5. Wirethe productNo output port of the quoteRequest component to the productNo input port
on the lookupPrice component.

6. Wirethe unitPrice port of the lookupPrice component to the unitPrice input port of the quote
document component.

Component X Studio Tutorial Lesson 2 Page 18 © 2001 Data Access Technologies

7. Drag an evaluator component from the filter palette to the quoteA pp component. The
evaluator component will be used to perform the computation needed to calculate the
totalPrice. In order to perform this computation, the evaluator component will need to be
configured.

8. Open the properties dialog for the evaluator component by first selecting the evaluator
component and then click the Properties () button.

9. Enter /unitPrice* $quoteRequest/ /quantity in the expr field. This expression will calculate
avalue by multiplying the unitPrice found in the input document by the quantity found in the
guoteRequest variable.

Many of the core components supplied with Component X use expression that
evaluate against XML documents. The form of expressions supported include
extended XPath/X SL (extensible stylesheet language) expressions and Java like
expressions.

A synopsis of XPath/XSL expressionsis:

name refersto an element at agiven level in the document structure

/ at the beginning of a name path selection selects the document root.

/ between names sel ects the child by the second name of the parent by the
first name.

Il selects any descendent by the name following.

@ selects the attribute by the name following.

+ performs addition.

- performs subtraction

* performs multiplication.

div performs division.

The XPath/XSL expressions have been extended such that $name refersthe a
Component X variable.

10. Enter totalPrice in the type field and click OK.

11. Wire the unitPrice port of the lookupPrice component to the input port of the evaluator and
the output of the evaluator to the total Price input port of the quote document, as shown in
Figure 2-24

Component X Studio Tutorial Lesson 2 Page 19 © 2001 Data Access Technologies

Figure 2-24: Add the lookupPrice component and evaluator component to quoteApp, and wireit to the
guoteRequest and quote documents, matching the appropriate ports.

quotePkyiquoteApp

! quotetpp 20

send |clear
guoteRequest

uoteQut

._ [l
b guoteRequest [0
14
productbo 1.1 EE‘D 11
ANty L unitPrice 0.1
= totalPrice 0.1

lookupPrice €3

}}productNo | |unitPrice

Mcleared

t chleared

axpr funitPrice * fguoteReguestfguantity
hpe: totalPrice

12. Now test the quoteApp by opening the quoteA pp input (quoteRequestin) and output
(quoteOut) ports. From the quoteRequest port, open grl.xml and send it. When the output
appears, note that the unitPrice and total Price information is now filled in.

Figure 2-25: Testing the completed quote project.

iguotePkygiguotedp,

[guotespp B2

uoteRequestin
send |clear
gquoteRequest

uoteOut

quote
guote [
guoteReguest [0
X oty 1.1
productio 1.1 pno 14
quantity 1, unitPrice 0.1
totalPrice 0.1
4
J‘L;eﬁt |sieared 3

Jlse cleared
HookupPrice £2

Fproductio | [unitPrice
2 JquotePKgiquoteApp.guote0

5] iuotePkgiquoteAppiquots™s2ed =) = xevaluamrE i @@@ @ E
@@@ @ @D@ [axpr JunitPrice * Structure VE

tvpe: totalPrice | @ guote

=7l version="1.0" 7= oty 2

=IDOCTYPE guoteReguests T >

FaADERE ggth unitPrice 28.00
=productio=1=iproductMo= Base:guoted) totalPrice 56-
=guantity=2=iquantity=

=/quoteRequest=

Component X Studio Tutorial Lesson 2 Page 20 © 2001 Data Access Technologies

13. Save your project as quoteApp. Your project now defines a component that you could usein
other projects. To do so, you would simply include the quoteA pp project and then create
instances of your quoteApp component anywhere its functionality is required.

2.7 Review

In this lesson you learned how to define and use document types as "variables'
and ports, and how to transform one document into another. Y ou learned how
pinswork, and how to include other projects.

A key feature of XML isthe ability to extend the language infinitely by adding your own custom
types. The document type definitions (DTDs) lay out the structure and rules for the XML, and
form a"contract” that others can rely on when devel oping applications to interface with yours.

Using types, you can easily accomplish transformations from one document type to another.

Types must be created in type packages, rather than in convenience packages. A composite type
can hold other elements or attributes. Y ou'll learn how to add attributes to typesin lesson 3.
Given a component with a published interface that accepts the desired input and produces the
desired output, you don't need to know all the details of the processing going on behind the
scenes. Y ou can view such components as "black boxes.”

Component X Studio relieves you of the chore of hand coding type definitions, and the XML to
perform transformations between document types.

In the next lesson you'll make use of this knowledge to create a Market application that models a
market of buyers and sellers.

2.8 Challenge Yourself

Test what you learned in this lesson with the following:

1. Try creating acomponent that transforms the quote back into a quoteRequest.
Expect to lose some data in the process. (The completed project isin
cxTutorial:lesson 2.91.)

2. Inanew project, include your original project then create a new component
adding to it the completed quoteA pp component and the component from the
exercise above. Wire them together and test it out. (the completed project isin
cxTutorial:lesson 2.92.)

Component X Studio Tutorial Lesson 2 Page 21 © 2001 Data Access Technologies

	Types and Transformation
	The Problem
	Creating a Document Type
	Transforming One Document Type to Another Document Type
	More on Pins
	Using Types as Ports
	Including Projects
	Review
	Challenge Yourself

