
Lesson 2: Types and Transformation
Lesson 2 introduces two of XML's most powerful features – the ability to create user-defined
types, and the ability to transform one document into another document. We'll cover the steps of
defining two document types, and transforming data from one format to the other. The various
stages of the project for this lesson are stored as projects quote1- quote4 in the tutorials
component archive, Lesson 2 folder.

 Lesson 2: Types and Transformation

2.1 The Problem
2.2 Creating a Document Type
2.3 Transforming One Document Type to Another Document Type
2.4 More on Pins

X
to
(S
co

R
st
th
w
fo

X
cr
us
in

T
"c
to

In
d
ty
R
yo
ru
in

C

�

2.5 Using Types as Ports
2.6 Including Projects
2.7 Review
2.8 Challenge Yourself

ML (eXtensible Markup Language) is similar to HTML in that you use markup language (tags)
 create documents. Both XML and HTML have evolved from, and are subsets of SGML
tandard Generalized Markup Language.) XML holds out the promise of revolutionizing
mmunications by "enabling the universal exchange of intelligent data."

ather than treating a document as a monolithic whole, XML lets you separate the data and
ructure. This means you can perform processing of data without concern for the appearance of
e data. And it means that you can readily develop new formats for displaying the content
ithout worrying about the actual content. You can transform the same set of data from one
rmat to another, without having to go back to the server for another copy of the data.

ML doesn't just provide a different set of tags from HTML. Instead, it provides a means for
eating extensible, or user defined "tags" as you need them. These tags are specified in DTDs
ing element type declarations, which specify the element name, content model (the type of
formation it can contain) and the attributes associated with the element.

his ability to specify custom types has many advantages: among them the ability to publish a
ontract" with the users of a component that describes the interface (that is the input and output)
 the component.

 this lesson we'll deal with the creation of document types, and transformations between
ocument types. You'll see that Component X Studio relieves you of the chore of hand coding
pe definitions, and the XSL or Java code to perform transformations between document types.
emember that a key feature of XML is the ability to extend the language infinitely by adding
ur own custom types. Also, the document type definitions (DTDs) lay out the structure and
les for the XML, and form a "contract" that others can rely on when developing applications to
terface with yours.

omponent X Studio Tutorial Lesson 2 Page 1 © 2001 Data Access Technologies

2.1 The Problem
Consider a company that offers a very small product catalog of two products -- tennis balls,
which come in white and yellow, and golf gloves, for which there is no choice of color. The
entire catalog is shown in Figure 2-1.
Figure 2-1: Sample Catalog

ACME SPORTING GOODS, LTD
2001 Spring Catalog

#1 Tennis Balls
Vacuum sealed can of 3.
Specify color: White, Yellow

#2 Golf Glove
Premium cabretta leather. White only.
One size fits all.

The catalog does not contain prices, perhaps because prices are dependent on volume. If you
want to know the price you need to request a quote. The quote request mechanism, which
eventually will be integrated into a web site, must only include the product number, and the
quantity of interest.

Thus a quote request (written in XML) for a golf glove is:

<quoteRequest>
 <productNo>2</productNo>
 <quantity>1</quantity>
</quoteRequest>

A quote request for 2 cans of tennis balls is:

<quoteRequest>
 <productNo>1</productNo>
 <quantity>2</quantity>
</itemRequest>

The actual quote will contain the information provided in the quote request, as well as unit price
and total price (which is quantity * unit price).

So, if the customer requests a quote for a golf glove, we expect the output in XML to be
something like this:

<quote>
 <qty>1</qty>
 <pno>2</pno>
 <unitPrice>15.99</unitPrice>
 <totalPrice>15.99</totalPrice>
</quote>

And if the customer requests a quote for 2 cans of tennis balls, we expect theXML output to be
something like:

Component X Studio Tutorial Lesson 2 Page 2 © 2001 Data Access Technologies

<quote>
 <qty>2</qty>
 <pno>1</pno>
 <unitPrice>4.95</unitPrice>
 <totalPrice>9.9</totalPrice>
</quote>

The transformation of the quote request document into the quote document involves the
following:

1. Passing through the product number and quantity.
2. Somehow looking up the unit price for the product.
3. Computing the total price (which is quantity * unit price.)
4. Using different names for the elements of the input and output documents.
5. Presenting the output elements in a different order than the input elements.

In this lesson you will create an application that transforms a customer quote request, (consisting
of a product number and quantity) into a completed quote (including quantity, product number,
unit price and total price.)

This lesson will take you step by step through the transformation, in the process creating
document types, which can be used to enforce the business rules that we want to establish.

2.2 Creating a Document Type
(The completed example for this section is provided as project quote1 in lesson 2 folder of the
cxTutorial archive.)

In this section you'll create an application containing a document type, add it to a component,
and explore how it affects the component.

1. Begin by creating a new project, and saving it in the tutorials archive, lesson 2 folder
using the name quote. Remember to save your work periodically during this lesson to
guard against inadvertent loss.

2.

3.
�

In the new project, create a convenience package for storing your components. Use the New |
New Package menu option, or the button. When the dialog appears, specify the name for the
package as quotePkg and click OK.

Now create a new type package, which corresponds to a DTD or schema. It defines a set of
related types. You cannot store type components in a regular package.

To create the type package, use the New | New Type Package menu item or the button. When
the dialog appears, specify the name for the type packages as quoteTypes. Choose quotePkg as
the parent package by clicking on it. Click OK.

Component X Studio Tutorial Lesson 2 Page 3 © 2001 Data Access Technologies

Figure 2-2: Create the quoteTypes type package in the quotePkg convenience package.

4. Create a type using the New | New Type menu option or the () button. When the dialog
appears, expand the Type Package tree and click on the quoteTypes package to select it. Specify
the type name quoteRequest, and the content type composite as shown in Figure 2-3. Composite
types can contain other types. Click OK. The quoteRequest type will appear as shown in Figure
2-4.

Figure 2-3: Create the quoteRequest type as a composite type in the quoteTypes type package.

Component X Studio Tutorial Lesson 2 Page 4 © 2001 Data Access Technologies

Figure 2-4: The quoteRequest type.

5. Next add an element called productNo to the quoteRequest type by clicking the Add New Type
() button. Notice the plus sign, which differentiates this button from the “New Type” button
you have used before. Complete the dialog as shown in Figure 2-5, and click OK. The
quoteRequest type now appears as shown in Figure 2-6.

Figure 2-5: Add a productNo element to the quoteRequest type using the Add New Type dialog.

Component X Studio Tutorial Lesson 2 Page 5 © 2001 Data Access Technologies

Figure 2-6: The quoteRequest type after adding the productNo element.

6. Add another element called quantity, again using the Add New Type () button. Complete the
Add New Type dialog as shown in Figure 2-7 and click OK. The quoteRequest type is now
complete, as shown in Figure 2-8.

Figure 2-7: Adding the quantity element to the quoteRequest type.

Component X Studio Tutorial Lesson 2 Page 6 © 2001 Data Access Technologies

Figure 2-8: The completed quoteRequest type with productNo and quantity elements.

7. To test the quoteRequest type, use the New | New Component menu option or the button to
create a new component called quoteApp in the quotePkg package. Add input and output ports
as shown in Figure 2-9 by dragging them from the ports palette and dropping them over the
respective margins of you new component.

Figure 2-9: The quoteApp component, with input and output ports.

8. Resize the quoteApp component to make it bigger. Drag and drop a quoteRequest type from the
component tree into the center of the quoteApp component. When you add a type component to
a composite component, the type is placed inside of a variable component, as shown in Figure 2-
10. Rename the variable component to quoteRequest by clicking over the name Cx on the
components tab, typing quoteRequest, and pressing the enter key.

Note that if the quoteApp component is not big enough, or if you drop the quoteRequest type too
close to the edge of the parent container, you'll end up creating a quoteRequest port. If you
make a mistake, just use the undo button ().

Component X Studio Tutorial Lesson 2 Page 7 © 2001 Data Access Technologies

Figure 2-10: When the quoteRequest type is added to the quoteApp, it is placed in a "constant" component
type, and behaves like a variable.

9. Position the mouse to the left of the quoteRequest component as shown in Figure 2-11. An input
port will pop out. Drag from this input port to the input port for the quoteApp component. The
two input ports will be wired together.

Figure 2-11: When the mouse hovers along the edge of the quoteRequest document, an input port will pop
out.

Component X Studio Tutorial Lesson 2 Page 8 © 2001 Data Access Technologies

10. Repeat the previous step positioning the mouse on the right side of the quoteRequest component

to pop out an output port.. Drag from the pop out output port to the quoteApp output port to wire
the two ports together, as shown in Figure 2-12.

Figure 2-12: Wiring the quoteRequest component to the input and output ports.

11. Now test the quoteApp by opening both the input and output ports (double click on each, or use
the Open Component () button) to open an XML editor for each.

12. To use the tree view mode to edit XML, you simply create a hierarchy of elements using the
buttons on the toolbar. In the input port, click the Element () button to create a new root level
element. Change the name to quoteRequest.

13. Click the Child Element () button to create an element under quoteRequest. Open the
quoteRequest element by clicking the sign, and change its name to productNo. In the value
column, enter 1.

14. Highlight quoteRequest and click the Child Element () button again to create another element
under it, and change its name to quantity. In the value column, enter 2.

The tree structure should appear as shown in
Figure 2-13.

15. You can view the XML generated by clicking the text view () button. The text view should

contain the following:

Component X Studio Tutorial Lesson 2 Page 9 © 2001 Data Access Technologies

<?xml version="1.0" ?>
<quoteRequest>
 <productNo>1</productNo>
 <quantity>2</quantity>
</quoteRequest>

Figure 2-13: Send the xml from the output component. Nothing appears in the output component.

16. Click the Send () button. Switch to the output component and you'll see that nothing has
happened. This is because the constant component that holds the quoteRequest type does not
send the content through its output port until it receives a Send signal through the Send pin.

17. To trigger the Send signal, open the Send pin at the top of the quoteRequest component by
double clicking on the send pin or the Open Component menu item on the send pin’s pop-up

menu. Click the Send () button on the new window being displayed.

18. Now look at the output port. The XML that you sent from the input port has now reached the
output port, as seen in Figure 2-14.

Component X Studio Tutorial Lesson 2 Page 10 © 2001 Data Access Technologies

Figure 2-14: Using the Send button on the send pin to send output from the quoteRequest component.

But what makes this example different from the simple hello example covered in Lesson 1? In
this case, the input passes through a quoteRequest type, so that the only thing that can be output
to the output port is a quoteRequest type. Remember that using Document Type Definitions
(DTDs) creates a "contract" with the world, saying, in this case, that nothing will come through a
quoteRequest output port that is not a valid quoteRequest.

19. You can test this by sending anything other than a valid quoteRequest from the input port. For
example, if you send the XML <test/>, you will get no result.

2.3 Transforming One Document Type to Another Document Type
(The completed project for Section 2.3 and 2.4 is quote2 in the lesson 2 folder of the cxTutorial
archive)

In the previous section you learned that a major advantage of using types is the ability to control
what is output by your component. But what if you want to transform or change the input from
one document type definition to another? For example, we want to take a quote request (product
number and quantity) as input, and output a quote (quantity, product number, unit price and total
price.)

There are many ways that a transformation can be performed, including using XML components,
an expression evaluator, or even a Java component for complex transforms. In this case we'll
simply map the elements of one type to the elements of another type.

Component X Studio Tutorial Lesson 2 Page 11 © 2001 Data Access Technologies

1. Under quoteTypes, create a new composite type called quote using the New Type

() button.

�

The quote document will contain two of the elements that were used in the

quoteRequest type -- productNo and quantity -- but they will be renamed.

2. Drag the quantity type from the Component Tree to the quote document.

3. Rename the quantity element to qty by selecting the quantity element within quote document

and then clicking the Rename () button.

4. Drag the productNo type from the Component Tree to the quote document. Rename it to

pno.

5. Add two new type elements to the quote type, as defined in Figure 2-15. The resulting quote

type should look like Figure 2-16.

Figure 2-15: Specifications for the unitPrice and totalPrice elements of the quote document.

Type Package Type Name Content Type Content Constraint
QuoteTypes UnitPrice Float 0:1 Optional
QuoteTypes TotalPrice Float 0:1 Optional

Figure 2-16: The completed quote document type.

6. Drag and drop the quote document type from the Component Tree into the quoteApp

component and rename it to quote.

7. Since the goal is to output the quote document, not the quoteRequest document, delete the

wire between the quoteRequest output port and the quoteApp output port. (To delete the
wire, click on it to select it, and then click the Delete () button.)

8. Now wire the quote output port to the quoteApp output port by dragging from one port to the

other.

Component X Studio Tutorial Lesson 2 Page 12 © 2001 Data Access Technologies

9. Next you need to wire the two type components together. However, since the quoteRequest
only outputs a quoteRequest document type and the quote type only accepts as input a quote
document type, you cannot just link the quoteRequest output port to the quote input port.
Instead, you need to wire the individual elements together.

10. Drag from the pop out output port next to the productNo in the quoteRequest component to

the pop out pno input port in the quote component.

11. Repeat the previous step for the quantity element. The result should appear as in Figure

2-17.
Figure 2-17: The quote document is added to quoteApp, and wired to the quoteRequest document and the
output port.

12. Notice that the unitPrice and total Price elements are not wired. But, since these were

defined as optional fields, sending a valid quoteRequest into the application will generate a
valid quote out. (That is, all the rules of the document type definition have been satisfied.)

13. Test the transformation by opening the quoteApp input and output ports and sending the xml

shown. (Remember you can load qr1.xml to save typing.) Don't forget to trigger the send
event in both the quoteRequest and quote documents, or you will get no output. The output
should appear as in Figure 2-18.

Pay particular attention to the name of the outer XML element -- it was quoteRequest in the
input, and quote in the output.

Component X Studio Tutorial Lesson 2 Page 13 © 2001 Data Access Technologies

Figure 2-18: Generating output requires that you issue sends from the input port, the quoteRequest send pin,
and the quote send pin. Note the output document is in a different format than the input format.

2.4 More on Pins
There is still more to do to complete the quote application but, before continuing, a little more on
pins is in order. Completing the following steps will mean that you won't have to manually send
signals to the quoteRequest and quote documents.

A component uses a pin when the pin acts as an output device through which the component
signals the outside world that an event, such as a send or a receipt, has occurred.

A component provides a pin that the outside world can use to trigger an event (such as a send.)

Figure 2-19 shows a component that has an "input" pin called provides and an "output" pin
called uses.

Figure 2-19: A component with provides and uses pins.

Component X Studio Tutorial Lesson 2 Page 14 © 2001 Data Access Technologies

In the previous section you had to trigger a send event in both the quoteRequest and the quote
components. You can wire the Sent pin of the quoteRequest component to the Send pin of the
quote component. Then when the quoteRequest sends output, it automatically signals the quote
component.

1. Try it by wiring the quoteRequest sent pin to the quote send pin, as shown in
Figure 2-20.

�

2. Then click the Send (button on the input port component, and the Send button

on the quoteRequest send pin. This time you won't have to click the Send button on the
quote send pin. The quote document will appear in the output window.

Figure 2-20: Wire the quoteRequest sent pin to the quote send pin.

3. Variables can be configured to automatically send upon receiving input. To configure a

component, open a components property window by selecting the component and then
clicking the Properties () button. Open the property window for the quoteRequest
component and set the sendOnReceipt property to yes as shown in figure 2-21.

Component X Studio Tutorial Lesson 2 Page 15 © 2001 Data Access Technologies

Figure 2-21: Setting the sendOnReceipt property.

4. Now try sending the xml again from the input port. The output report displays the quote

document without you having to perform a manual "send" on either of the Send pins.

2.5 Using Types as Ports
(The completed project for this section is quote3 in the lesson 2 folder of the cxTutorial archive)

Earlier in this lesson we mentioned that you needed to drop a document type in the center of a
composite component or you would create a port instead of a "variable." Now we are going to
experiment with using document types as ports.

1. Delete the input and output ports on quoteApp by clicking to select them, and then
using the button.

2. From the Component Tree quoteTypes Type package, drag the quoteRequest type

to the left side of the quoteApp component.

�

Note that the input port is named quoteRequest1. A 1 has been appended since the name
quoteRequest is already taken by the variable component.

3. Rename the qouteRequest1 port to be quoteRequestIn.

4. Repeat the previous step, this time dragging the quote type to the right side of the quoteApp

component and rename it to be quoteOut.

5. Wire the new quoteRequestIn port to the input port on the quoteRequest document.

Component X Studio Tutorial Lesson 2 Page 16 © 2001 Data Access Technologies

6. Wire the new quoteOut port to the port on the output port on the quote document. At this
time your quoteApp component should look like figure 2-22.

7. Test the changes to the quoteApp as you did in the previous section. The results will be the

same. However there is a major difference. Now what is "exposed" on the quoteApp is a set
of well defined inputs and outputs that form a "contract" with the world. Anyone who wants
to use this component can rely on it only accepting a quoteRequest type as input and only
producing a quote type as output.

Figure 2-22: Create ports out of document types by dropping them on the edge of the quoteApp component,
and rewiring.

2.6 Including Projects
(The completed project for this section is quote4 in the lesson 2 folder of the cxTutorial archive)

The quote application still doesn't provide the unit price and total price information. Rather than
build that functionality from scratch, we'll include another project containing a component that
will provide this functionality. The internals that make the included component work is
immaterial right now. What is important is the interface the components provide, as you will
see.

1. Use the Project | Include menu option.

2. When the Include dialog appears, select the pricePkg project in the lesson 2
�
folder of the cxTutorial archive.

Component X Studio Tutorial Lesson 2 Page 17 © 2001 Data Access Technologies

3. Examine the Component Tree. You'll notice that the new package was added to the root.
This is because it was originally created in the root. In the pricePkg package you will find a
lookupPrice component. You will use this component to perform a price lookup in your
quoteApp Component.

Figure 2-23: The imported components will appear in the pricePkg in the Component Tree.

About Included Projects

When you include a project, all components defined in the included project can be
used within the project you are currently editing. However, you cannot edit the
base definitions of the components defined in the included project. When opening
the base definition the component display will be read only.

The core set components supplied with Component X are defined in a set of
projects found within the cx archive. These are separate projects so that you only
need to include those projects that contain the components you need for the
functionality of the components you are writing.

When you create a new project, any projects defined in the Set Default Project
Properties dialog are automatically included. You can add and remove projects
from this default set by using the Options | Set Default Project Properties menu
item. You can add and remove included projects from your project by using the
Project | Properties menu item.

4. Drag the lookupPrice component from the Component Tree to the quoteApp component.

5. Wire the productNo output port of the quoteRequest component to the productNo input port

on the lookupPrice component.

6. Wire the unitPrice port of the lookupPrice component to the unitPrice input port of the quote

document component.

Component X Studio Tutorial Lesson 2 Page 18 © 2001 Data Access Technologies

7. Drag an evaluator component from the filter palette to the quoteApp component. The
evaluator component will be used to perform the computation needed to calculate the
totalPrice. In order to perform this computation, the evaluator component will need to be
configured.

8. Open the properties dialog for the evaluator component by first selecting the evaluator

component and then click the Properties () button.

9. Enter /unitPrice * $quoteRequest/ /quantity in the expr field. This expression will calculate

a value by multiplying the unitPrice found in the input document by the quantity found in the
quoteRequest variable.

About Expressions

Many of the core components supplied with Component X use expression that
evaluate against XML documents. The form of expressions supported include
extended XPath/XSL (extensible stylesheet language) expressions and Java like
expressions.

A synopsis of XPath/XSL expressions is:

name refers to an element at a given level in the document structure
/ at the beginning of a name path selection selects the document root.

/ between names selects the child by the second name of the parent by the
first name.

// selects any descendent by the name following.
@ selects the attribute by the name following.

+ performs addition.
- performs subtraction
* performs multiplication.
div performs division.

The XPath/XSL expressions have been extended such that $name refers the a
Component X variable.

10. Enter totalPrice in the type field and click OK.

11. Wire the unitPrice port of the lookupPrice component to the input port of the evaluator and

the output of the evaluator to the totalPrice input port of the quote document, as shown in
Figure 2-24

Component X Studio Tutorial Lesson 2 Page 19 © 2001 Data Access Technologies

Figure 2-24: Add the lookupPrice component and evaluator component to quoteApp, and wire it to the
quoteRequest and quote documents, matching the appropriate ports.

12. Now test the quoteApp by opening the quoteApp input (quoteRequestIn) and output

(quoteOut) ports. From the quoteRequest port, open qr1.xml and send it. When the output
appears, note that the unitPrice and totalPrice information is now filled in.

Figure 2-25: Testing the completed quote project.

Component X Studio Tutorial Lesson 2 Page 20 © 2001 Data Access Technologies

13. Save your project as quoteApp. Your project now defines a component that you could use in

other projects. To do so, you would simply include the quoteApp project and then create
instances of your quoteApp component anywhere its functionality is required.

2 7 Review
In this lesson you learned how to define and use document types as "variables"
and ports, and how to transform one document into another. You learned how
pins work, and how to include other projects.

A
t
f

U

T
c
G
d
s

C
p

I
m

2
T

C

.

�

 key feature of XML is the ability to extend the language infinitely by adding your own custom

ypes. The document type definitions (DTDs) lay out the structure and rules for the XML, and
orm a "contract" that others can rely on when developing applications to interface with yours.

sing types, you can easily accomplish transformations from one document type to another.

ypes must be created in type packages, rather than in convenience packages. A composite type
an hold other elements or attributes. You'll learn how to add attributes to types in lesson 3.
iven a component with a published interface that accepts the desired input and produces the
esired output, you don't need to know all the details of the processing going on behind the
cenes. You can view such components as "black boxes."

omponent X Studio relieves you of the chore of hand coding type definitions, and the XML to
erform transformations between document types.

n the next lesson you'll make use of this knowledge to create a Market application that models a
arket of buyers and sellers.

.8 Challenge Yourself
est what you learned in this lesson with the following:

1. Try creating a component that transforms the quote back into a quoteRequest.
Expect to lose some data in the process. (The completed project is in
cxTutorial:lesson 2.q1.)

�

2. In a new project, include your original project then create a new component

adding to it the completed quoteApp component and the component from the
exercise above. Wire them together and test it out. (the completed project is in
cxTutorial:lesson 2.q2.)

omponent X Studio Tutorial Lesson 2 Page 21 © 2001 Data Access Technologies

	Types and Transformation
	The Problem
	Creating a Document Type
	Transforming One Document Type to Another Document Type
	More on Pins
	Using Types as Ports
	Including Projects
	Review
	Challenge Yourself

